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Preface 
This book presents the results of Project Oberon, namely an entire software environment for a 
modern workstation. The project was undertaken by the authors in the years 1986-89, and its 
primary goal was to design and implement an entire system from scratch, and to structure it in 
such a way that it can be described, explained, and understood as a whole. In order to become 
confronted with all aspects, problems, design decisions and details, the authors not only 
conceived but also programmed the entire system described in this book, and more. 

Although there exist numerous books explaining principles and structures of operating systems, 
there is a lack of descriptions of systems actually implemented and used. We wished not only to 
give advice on how a system might be built, but to demonstrate how one was built. Program 
listings therefore play a key role in this text, because they alone contain the ultimate explanations. 
The choice of a suitable formalism therefore assumed great importance, and we designed the 
language Oberon as not only an effective vehicle for implementation, but also as a publication 
medium for algorithms in the spirit in which Algol 60 had been created three decades ago. 
Because of its structure, the language Oberon is equally well suited to exhibit global, modular 
structures of programmed systems. 

In spite of the small number of man-years spent on realizing the Oberon System, and in spite of its 
compactness letting its description fit a single book, it is not an academic toy, but rather a versatile 
workstation system that has found many satisfied and even enthusiastic users in academia and 
industry. The core system described here, consisting of storage, file, display, text, and viewer 
managers, of program loader and device drivers, draws its major power from a suitably chosen, 
flexible set of basic facilities and, most importantly, of their effective extensibility in many 
directions and for many applications. The extensibility is particularly enhanced by the language 
Oberon on the one, and by the efficiency of the basic core on the other hand. It is rooted in the 
application of the object-oriented paradigm which is employed wherever extensibility appears 
advantageous. 

In addition to the core system, we describe in full detail the compiler for the language Oberon and 
a graphics system, which both may be regarded as applications. The former reveals how a 
compact compiler is designed to achieve both fast compilation and efficient, dense code. The 
latter stands as an example of extensible design based on object-oriented techniques, and it 
shows how a proper integration with an existing text system is possible. Another addition to the 
core system is a network module allowing many workstations to be interconnected. We also show 
how the Oberon System serves conveniently as the basis for a multi-server station, 
accommodating a file distribution, a printing, and an electronic-mail facility. 

Compactness and regular structure, and due attention to efficient implementation of important 
details appear to be the key to economical software engineering. With the Oberon System, we 
wish to refute Reiser's Law, which has been confirmed by virtually all recent releases of operating 
systems: In spite of great leaps forward, hardware is becoming faster more slowly than software is 
becoming slower. The Oberon System has required a tiny fraction of the manpower demanded for 
the construction of widely-used commercial operating systems, and a small fraction of their 
demands on computing power and storage capacity, while providing equal power and flexibility to 
the user, albeit without certain bells and whistles. The reader is invited to study how this was 
possible. 

But most importantly, we hope to present a worth-while case study of a substantial piece of 
programming in the large for the benefit of all those who are eager to learn from the experiences 
of others. 

We wish to thank the many anonymous contributors of suggestions, advice, and encouragement. 
In particular we wish to thank our colleagues H. Mössenböck and B. Sanders and our associates 
at the Institut für Computersysteme for reading all or parts of the draft of this book. We are grateful 
to M. Brandis, R. Crelier, A. Disteli, M. Franz, and J. Templ for their work in porting the Oberon 
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System successfully to various commercially available computers, and thus making the study of 
this book more worth-while for many readers. And we gratefully acknowledge the contribution of 
our school, ETH, for providing the environment and support which made it possible for us to 
pursue and complete this project. 

Zürich, February 1992 

N.W. and J.G. 
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Preface to the 2013 edition 
Comments about plans to prepare a second edition to this book varied widely. Some felt that this 
book is outdated, that nobody is interested in a system of this kind any longer. "Why bother"? 
Others felt that there is an urgent need for this type of text, which explains an entire system in detail 
rather than merely proposing strategies and approaches. "By all means"!. 

Very much has changed in these last 30 years. But even without this change, it would be 
preposterous to propose and construct a system competing with existing, worldwide "standards". 
Indeed, very few people would be interested in using it. The community at large seems to be stuck 
with these gigantic software systems, and helpless against their complexity, their peculiarities, and 
their occasional unreliability. 

But surely new systems will emerge, perhaps for different, limited purposes, allowing for smaller 
systems. One wonders where their designers will study and learn their trade. There is little technical 
literature, and my conclusion is that understanding is generally gained by doing, that is, "on the 
job". However, this is a tedious and suboptimal way to learn. Whereas sciences are governed by 
principles and laws to be learned and understood, in engineering experience and practice are 
indispensable. Does Computer Science teach laws that hold for (almost) ever? More than any other 
field of engineering, it would be predestined to be based on rigorous mathematical principles. Yet, 
its core hardly is. Instead, one must rely on experience, that is, on studying sound examples.  

The main purpose of and the driving force behind this project is to provide a single book that serves 
as an example of a system that exists, is in actual use, and is explained in all detail. This task drove 
home the insight that it is hard to design a powerful and reliable system, but even much harder to 
make it so simple and clear that it can be studied and fully understood. Above everything else, it 
requires a stern concentration on what is essential, and the will to leave out the rest, all the popular 
"bells and whistles". 

Recently, a growing number of people has become interested in designing new, smaller systems. 
The vast complexity of popular operating systems makes them not only obscure, but also provides 
opportunities for "back doors". They allow external agents to introduce spies and devils unnoticed 
by the user, making the system attackable and corruptible. The only safe remedy is to build a safe 
system anew from scratch. 

Turning now to a practical aspect: The largest chapter of the 1992 edition of this book dealt with the 
compiler translating Oberon programs into code for the NS32032 processor. This processor is now 
neither available nor is its architecture recommendable. Instead of writing a new compiler for some 
other commercially available architecture, I decided to design my own in order to extend the desire 
for simplicity and regularity to the hardware. The ultimate benefit of this decision is not only that the 
software, but also the hardware of the Oberon System is described completely and rigorously. The 
processor is called RISC. The hardware modules are decribed exclusively in the language Verilog. 

The decision for a new processor was expedited by the possibility to implement it, that is, to make it 
concrete and available. This is due to the advent of programmable gate arrays (FPGA), allowing to 
turn a design into a real, functioning processor on a single chip. As a result, the described system 
can be realized using a low-cost development board. This board, Xilinx Spartan-3 by Digilent, 
features a 1-MByte static memory, which easily accommodates the entire Oberon System, incuding 
its compiler. It is shown, together with a display, a keyboard and a mouse in the photo below. The 
board is visible in the lower, right corner. 

The decision to develop our own processor required that the chapters on the compiler and the 
linking loader had to be completely rewritten. However, it also provided the welcome chance to 
improve their clarity considerably. The new processor indeed allowed to simplify and straighten out 
the entire compiler. 
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For a description of a system to be comprehensible, the key element is the notation, formalism, or 
language in which it is defined. Algol 60, published 50 years ago, was proposed as a publication 
language, as a formalism in which algorithms could be defined without reference to particular 
computers, or to any mechanism at all. This was a great goal, but so far it was hardly achieved. 
Yet, it emphasized the importance of abstraction to be achieved by a notation with a mathematically 
rigorous foundation. At least, Algol was the first language based on a formally defined syntax. Algol 
was the result of the early recognition that programs must never be written just to feed computers, 
but always to be understood and to be instructive to people. 

In all my past work, I have tried to design a successor to Algol, that improves its rigor and at the 
same time extends its applicability from numerical algorithms to software systems. From a long 
sequence, starting with Algol, through Pascal, Modula, and Oberon, we have come closer to this 
goal than ever before, and closer than any other language in existence. The key lay in a continued 
struggle for sensible simplification. 

The Oberon language, defined in 1988, underwent a revision in 2007, mostly discarding features 
that were either duplications or not essential. Adaptation of the system's source code to the revised 
language was, besides the change of processor, the second important reason for numerous, local 
changes in this text. We summarize the various deletions of features: 

1. The data types LONGINT, SHORTINT, and LONGREAL have been discarded, and with them the 
concept of type inclusion. 

2. The LOOP and EXIT statements (repetitions with multiple exit points) have been discarded. 

3. The WITH statement (regional type guard) has been discarded. 
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3. The RETURN statement has been discarded and is now syntactically merged with the ending of 
function procedure declarations. 

4. Objects declared in a procedure P are not accessible within a procedure Q that is itself local to P. 
That is, objects must be either strictly local or global in order to be accessible. 

5. Assignments to imported variables are not permitted  (read-only export). 

6. Forward procedure declarations have been discarded. 

In contrast to these removals, there is a single addition (made in 2012): The data type BYTE has 
been added. Its values are integers x satisfying  0 ≤ x < 256. This addition prevents the frequent 
abuse of the type CHAR. The type BYTE is mainly used for elements of arrays and records in low-
level modules in order to economise the use of memory. 

In spite of these two reasons for changes -- one at the highest level, the language, the other at the 
lowest, the hardware -- the remainder of the book proved to be pretty stable and still valid. It has 
been my desire to present the system essentially as it existed 25 years ago, without 
embellishments. The chapters 3 - 5 on tasking, the display and the text, originally written by J. 
Gutknecht, have been carried over virtually unchanged. Significant changes, however, were 
necessary mainly in the descriptions of device drivers for keyboard and mouse. They now use the 
PS-2 interface standard. The disk has been replaced by a single SD-card (flash memory) with a 
standard SPI interface. The interface to the net no longer uses the RS-485 interface, but is also 
based on the SPI standard. The chapters on the compiler and the linker are completely new. 

Mostly thanks to the regularity of the RISC instruction set, the size of the compiler could be reduced 
significantly. It now measures less than 2900 lines of program and compiles itself in about 3 
seconds, which is proof of its efficiency. The entire system compiles itself in less than 10 seconds. 

Considered extravagant and hardly necessary only years ago, run-time checks are generated 
automatically. In particular, they cover index range checks and access to NIL-pointers. Due to their 
efficiency they hardly affect run-time speed, but are a great benefit to programmers. 

A welcome consequence of the simplifications of language and processor is the fact that all parts 
that had been written in assembler code in 1992  -- and therefore were not included in the book -- 
have now been expressed in Oberon as well. Vindicating my perennial efforts to obtain a high-level 
language which is powerful and flexible, and also efficient enough to express parts such as device 
drivers and raster operations, this was the necessary and final step to make this book 
comprehensive and complete. 

References 

http://www.inf.ethz.ch/personal/wirth/Oberon/Oberon07.Report.pdf 

http://www.inf.ethz.ch/personal/wirth/FPGA-relatedWork/RISC.Arch.pdf 
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1  History and motivation 

How could anyone diligently concentrate on his work on an afternoon with such warmth, splendid 
sunshine, and blue sky. This rhetorical question was one I asked many times while spending a 
sabbatical leave in California in 1985. Back home everyone would feel compelled to profit from the 
sunny spells to enjoy life at leisure in the country-side, wandering or engaging in one's favourite 
sport. But here, every day was like that, and giving in to such temptations would have meant the 
end of all work. And, had I not chosen this location in the world because of its inviting, enjoyable 
climate? 

Fortunately, my work was also enticing, making it easier to buckle down. I had the privilege of 
sitting in front of the most advanced and powerful workstation anywhere, learning the secrets of 
perhaps the newest fad in our fast developing trade, pushing colored rectangles from one place of 
the screen to another. This all had to happen under strict observance of rules imposed by physical 
laws and by the newest technology. Fortunately, the advanced computer would complain 
immediately if such a rule was violated, it was a rule checker and acted like your big brother, 
preventing you from making steps towards disaster. And it did what would have been impossible for 
oneself, keeping track of thousands of constraints among the thousands of rectangles laid out. This 
was called computer-aided design. "Aided" is rather a euphemism, but the computer did not 
complain about the degradation of its role. 

While my eyes were glued to the colorful display, and while I was confronted with the evidence of 
my latest inadequacy, in through the always open door stepped my colleague (JG). He also 
happened to spend a leave from duties at home at the same laboratory, yet his face did not exactly 
express happiness, but rather frustration. The chocolate bar in his hand did for him what the coffee 
cup or the pipe does for others, providing temporary relaxation and distraction. It was not the first 
time he appeared in this mood, and without words I guessed its cause. And the episode would 
reoccur many times. 

His days were not filled with the great fun of rectangle-pushing; he had an assignment. He was 
charged with the design of a compiler for the same advanced computer. Therefore, he was forced 
to deal much more closely, if not intimately, with the underlying software system. Its rather frequent 
failures had to be understood in his case, for he was programming, whereas I was only using it 
through an application; in short, I was an end-user! These failures had to be understood not for 
purposes of correction, but in order to find ways to avoid them. How was the necessary insight to 
be obtained? I realized at this moment that I had so far avoided this question; I had limited 
familiarization with this novel system to the bare necessities which sufficed for the task on my mind. 

It soon became clear that a study of the system was nearly impossible. Its dimensions were simply 
awesome, and documentation accordingly sparse. Answers to questions that were momentarily 
pressing could best be obtained by interviewing the system's designers, who all were in-house. In 
doing so, we made the shocking discovery that often we could not understand their language. 
Explanations were fraught with jargon and references to other parts of the system which had 
remained equally enigmatic to us. 

So, our frustration-triggered breaks from compiler construction and chip design became devoted to 
attempts to identify the essence, the foundations of the system's novel aspects. What made it 
different from conventional operating systems? Which of these concepts were essential, which 
ones could be improved, simplified, or even discarded? And where were they rooted? Could the 
system's essence be distilled and extracted, like in a chemical process? 

During the ensuing discussions, the idea emerged slowly to undertake our own design. And 
suddenly it had become concrete. "Crazy" was my first reaction, and "impossible". The sheer 
amount of work appeared as overwhelming. After all, we both had to carry our share of teaching 
duties back home. But the thought was implanted and continued to occupy our minds. 
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Sometime thereafter, events back home suggested that I should take over the important course 
about System Software. As it was the unwritten rule that it should primarily deal with operating 
system principles, I hesitated. My scruples were easily justified: After all I had never designed such 
a system nor a part of it. And how can one teach an engineering subject without first-hand 
experience? 

Impossible? Had we not designed compilers, operating systems, and document editors in small 
teams? And had I not repeatedly experienced that an inadequate and frustrating program could be 
programmed from scratch in a fraction of source code used by the original design? Our brain-
storming continued, with many intermissions, over several weeks, and certain shapes of a system 
structure slowly emerged through the haze. After some time, the preposterous decision was made: 
we would embark on the design of an operating system for our workstation (which happened to be 
much less powerful than the one used for my rectangle-pushing) from scratch. 

The primary goal, to personally obtain first-hand experience, and to reach full understanding of 
every detail, inherently determined our manpower: two part-time programmers. We tentatively set 
our time-limit for completion to three years. As it later turned out, this had been a good estimate; 
programming was begun in early 1986, and a first version of the system was released in the fall of 
1988. 

Although the search for an appropriate name for a project is usually a minor problem and often left 
to chance and whim of the designers, this may be the place to recount how Oberon entered the 
picture in our case. It happened that around the time of the beginning of our effort, the space probe 
Voyager made headlines with a series of spectacular pictures taken of the planet Uranus and of its 
moons, the largest of which is named Oberon. Since its launch I had considered the Voyager 
project as a singularly well-planned and successful endeavor, and as a small tribute to it I picked 
the name of its latest object of investigation. There are indeed very few engineering projects whose 
products perform way beyond expectations and beyond their anticipated lifetime; mostly they fail 
much earlier, particularly in the domain of software. And, last but not least, we recall that Oberon is 
famous as the king of elfs. 

The consciously planned shortage of manpower enforced a single, but healthy, guideline: 
Concentrate on essential functions and omit embellishments that merely cater to established 
conventions and passing tastes. Of course, the essential core had first to be recognized and 
crystallized. But the basis had been laid. The ground rule became even more crucial when we 
decided that the result should be able to be used as teaching material. I remembered C.A.R. 
Hoare's plea that books should be written presenting actually operational systems rather than half-
baked, abstract principles. He had complained in the early 1970s that in our field engineers were 
told to constantly create new artifacts without being given the chance to study previous works that 
had proven their worth in the field. How right was he, even to the present day! 

The emerging goal to publish the result with all its details let the choice of programming language 
appear in a new light: it became crucial. Modula-2 which we had planned to use, appeared as not 
quite satisfactory. Firstly, it lacked a facility to express extensibility in an adequate way. And we had 
put extensibility among the principal properties of the new system. By "adequate" we include 
machine-independence. Our programs should be expressed in a manner that makes no reference 
to machine peculiarities and low-level programming facilities, perhaps with the exception of device 
interfaces, where dependence is inherent. 

Hence, Modula-2 was extended with a feature that is now known as type extension. We also 
recognized that Modula-2 contained several facilities that we would not need, that do not genuinely 
contribute to its power of expression, but at the same time increase the complexity of the compiler. 
But the compiler would not only have to be implemented, but also to be described, studied, and 
understood. This led to the decision to start from a clean slate also in the domain of language 
design, and to apply the same principle to it: concentrate on the essential, purge the rest. The new 
language, which still bears much resemblance to Modula-2, was given the same name as the 
system: Oberon [1, 2]. In contrast to its ancestor it is terser and, above all, a significant step 
towards expressing programs on a high level of abstraction without reference to machine-specific 
features. 
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We started designing the system in late fall 1985, and programming in early 1986. As a vehicle we 
used our workstation Lilith and its language Modula-2. First, a cross-compiler was developed, then 
followed the modules of the inner core together with the necessary testing and down-loading 
facilities. The development of the display and the text system proceeded simultaneously, without 
the possibility of testing, of course. We learned how the absence of a debugger, and even more so 
the absence of a compiler, can contribute to careful programming. 

Thereafter followed the translation of the compiler into Oberon. This was swiftly done, because the 
original had been written with anticipation of the later translation. After its availability on the target 
computer Ceres, together with the operability of the text editing facility, the umbilical cord to Lilith 
could be cut off. The Oberon System had become real, at least its draft version. This happened 
around the middle of 1987; its description was published thereafter [3], and a manual and guide 
followed in 1991 [5]. 

The system's completion took another year and concentrated on connecting the workstations in a 
network for file transfer [4], on a central printing facility, and on maintenance tools. The goal of 
completing the system within three years had been met. The system was introduced in the middle 
of 1988 to a wider user community, and work on applications could start. A service for electronic 
mail was developed, a graphics system was added, and various efforts for general document 
preparation systems proceeded. The display facility was extended to accommodate two screens, 
including color. At the same time, feedback from experience in its use was incorporated by 
improving existing parts. Since 1989, Oberon has replaced Modula-2 in our introductory 
programming courses. 
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2  Basic concepts and structure of the system 

2.1. Introduction 
In order to warrant the sizeable effort of designing and constructing an entire operating system from 
scratch, a number of basic concepts need to be novel. We start this chapter with a discussion of the 
principal concepts underlying the Oberon System and of the dominant design decisions. On this 
basis, a presentation of the system's structure follows. It will be restricted to its coarsest level, 
namely the composition and interdependence of the largest building blocks, the modules. The 
chapter ends with an overview of the remainder of the book. It should help the reader to understand 
the role, place, and significance of the parts described in the individual chapters. 

The fundamental objective of an operating system is to present the computer to the user and to the 
programmer at a certain level of abstraction. For example, the store is presented in terms of 
requestable pieces or variables of a specified data type, the disk is presented in terms of 
sequences of characters (or bytes) called files, the display is presented as rectangular areas called 
viewers, the keyboard is presented as an input stream of characters, and the mouse appears as a 
pair of coordinates and a set of key states. Every abstraction is characterized by certain properties 
and governed by a set of operations. It is the task of the system to implement these operations and 
to manage them, constrained by the available resources of the underlying computer. This is 
commonly called resource management. 

Every abstraction inherently hides details, namely those from which it abstracts. Hiding may occur 
at different levels. For example, the computer may allow certain parts of the store, or certain 
devices to be made inaccessible according to its mode of operation (user/supervisor mode), or the 
programming language may make certain parts inaccessible through a hiding facility inherent in its 
visibility rules. The latter is of course much more flexible and powerful, and the former indeed plays 
an almost negligible role in our system. Hiding is important because it allows maintenance of 
certain properties (called invariants) of an abstraction to be guaranteed. Abstraction is indeed the 
key of any modularization, and without modularization every hope of being able to guarantee 
reliability and correctness vanishes. Clearly, the Oberon System was designed with the goal of 
establishing a modular structure on the basis of purpose-oriented abstractions. The availability of 
an appropriate programming language is an indispensable prerequisite, and the importance of its 
choice cannot be over-emphasized. 

2.2. Concepts 

2.2.1. Viewers 

Whereas the abstractions of individual variables representing parts of the primary store, and of files 
representing parts of the disk store are well established notions and have significance in every 
computer system, abstractions regarding input and output devices became important with the 
advent of high interactivity between user and computer. High interactivity requires high bandwidth, 
and the only channel of human users with high bandwidth is the eye. Consequently, the computer's 
visual output unit must be properly matched with the human eye. This occurred with the advent of 
the high-resolution display in the mid 1970s, which in turn had become feasible due to faster and 
cheaper electronic memory components. The high-resolution display marked one of the few very 
significant break-throughs in the history of computer development. The typical bandwidth of a 
modern display is in the order of 100 MHz. Primarily the high-resolution display made visual output 
a subject of abstraction and resource management. In the Oberon System, the display is partitioned 
into viewers, also called windows, or more precisely, into frames, rectangular areas of the 
screen(s). A viewer typically consists of two frames, a title bar containing a subject name and a 
menu of commands, and a main frame containing some text, graphic, picture, or other object. A 
viewer itself is a frame; frames can be nested, in principle to any depth. 
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The System provides routines for generating a frame (viewer), for moving and for closing it. It 
allocates a new viewer at a specified place, and upon request delivers hints as to where it might 
best be placed. It keeps track of the set of opened viewers. This is what is called viewer 
management, in contrast to the handling of their displayed contents. 

But high interactivity requires not only a high bandwidth for visual output, it demands also flexibility 
of input. Surely, there is no need for an equally large bandwidth, but a keyboard limited by the 
speed of typing to about 100 Hz is not good enough. The break-through on this front was achieved 
by the so-called mouse, a pointing device which appeared roughly at the same time as the high-
resolution display. 

This was by no means just a lucky coincidence. The mouse comes to fruition only through 
appropriate software and the high-resolution display. It is itself a conceptually very simple device 
delivering signals when moved on the table. These signals allow the computer to update the 
position of a mark - the cursor - on the display. Since feedback occurs through the human eye, no 
great precision is required from the mouse. For example, when the user wishes to identify a certain 
object on the screen, such as a letter, he moves the mouse as long as required until the mapped 
cursor reaches the object. This stands in marked contrast to a digitizer which is supposed to deliver 
exact coordinates. The Oberon System relies very much on the availability of a mouse. 

Perhaps the cleverest idea was to equip mice with buttons. By being able to signal a request with 
the same hand that determines the cursor position, the user obtains the direct impression of issuing 
position-dependent requests. Position-dependence is realized in software by delegating 
interpretation of the signal to a procedure - a so-called handler or interpreter -which is local to the 
viewer in whose area the cursor momentarily appears. A surprising flexibility of command activation 
can be achieved in this manner by appropriate software. Various techniques have emerged in this 
connection, e.g. pop-up menus, pull-down-menus, etc. which are powerful even under the presence 
of a single button only. For many applications, a mouse with several keys is far superior, and the 
Oberon System basically assumes three buttons to be available. The assignment of different 
functions to the keys may of course easily lead to confusion when every application prescribes 
different key assignment. This is, however, easily avoided by the adherence to certain "global" 
conventions. In the Oberon System, the left button is primarily used for marking a position (setting a 
caret), the middle button for issuing general commands (see below), and the right button for 
selecting displayed objects. 

Recently, it has become fashionable to use overlapping windows mirroring documents being piled 
up on one's desk. We have found this metaphor not entirely convincing. Partially hidden windows 
are typically brought to the top and made fully visible before any operation is applied to their 
contents. In contrast to the insignificant advantage stands the substantial effort necessary to 
implement this scheme. It is a good example of a case where the benefit of a complication is 
incommensurate with its cost. Therefore, we have chosen a solution that is much simpler to realize, 
yet has no genuine disadvantages compared to overlapping windows: tiled viewers as shown in 
Fig. 2.1. 

2.2.2. Commands 

Position-dependent commands with fixed meaning (fixed for each type of viewer) must be 
supplemented by general commands. Conventionally, such commands are issued through the 
keyboard by typing the program's name that is to be executed into a special command text. In this 
respect, the Oberon System offers a novel and much more flexible solution which is presented in 
the following paragraphs. 

First of all we remark that a program in the common sense of a text compiled as a unit is mostly a 
far too large unit of action to serve as a command. Compare it, for example, with the insertion of a 
piece of text through a mouse command. In Oberon, the notion of a unit of action is separated from 
the notion of unit of compilation. The former is a command represented by a (exported) procedure, 
the latter is a module. Hence, a module may, and typically does, define several, even many 
commands. Such a (general) command may be invoked at any time by pointing at its name in any 
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text visible in any viewer on the display, and by clicking the middle mouse button. The command 
name has the form M.P, where P is the procedure's identifier and M that of the module in which P is 
declared. As a consequence, any command click may cause the loading of one or several modules, 
if M is not already present in main store. The next invocation of M.P occurs instantaneously, since 
M is already loaded. A further consequence is that modules are never (automatically) removed, 
because a next command may well refer to the same module. 

 
Fig. 2.1. Oberon display with tiled viewers 

Every command has the purpose to alter the state of some operands. Typically, they are denoted 
by text following the command identification, and Oberon follows this convention. Strictly speaking, 
commands are denoted as parameterless procedures; but the system provides a way for the 
procedure to identify the text position of its origin, and hence to read and interpret the text following 
the command, i.e. the actual parameters. Both reading and interpretation must, however, be 
programmed explicitly. 

The parameter text must refer to objects that exist before command execution starts and are quite 
likely the result of a previous command interpretation. In most operating systems, these objects are 
files registered in the directory, and they act as interfaces between commands. The Oberon System 
broadens this notion; the links between consecutive commands are not restricted to files, but can 
be any global variable, because modules do not disappear from storage after command 
termination, as mentioned above. 

This tremendous flexibility seems to open Pandora's box, and indeed it does when misused. The 
reason is that global variables' states may completely determine and alter the effect of a command. 
The variables represent hidden states, hidden in the sense that the user is in general unaware of 
them and has no easy way to determine their value. The positive aspect of using global variables 
as interfaces between commands is that some of them may well be visible on the display. All 
viewers - and with them also their contents - are organized in a data structure that is rooted in a 
global variable (in module Viewers). Parts of this variable therefore constitute visible states, and it is 
highly appropriate to refer to them as command parameters. 

One of the rules of what may be called the Oberon Programming Style is therefore to avoid hidden 
states, and to reduce the introduction of global variables. We do not, however, raise this rule to the 
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rank of a dogma. There exist genuinely useful exceptions, even if the variables have no visible 
parts. 

There remains the question of how to denote visible objects as command parameters. An obvious 
case is the use of the most recent selection as parameter. A procedure for locating that selection is 
provided by module Oberon. (It is restricted to text selections).  Another possibility is the use of the 
caret position in a text. This is used in the case of inserting new text; the pressing of a key on the 
keyboard is also considered to be a command, and it causes the character's insertion at the caret 
position. 

A special facility is introduced for designating viewers as operands: the star marker. It is placed at 
the cursor position when the keyboard's mark key (SETUP) is pressed. The procedure 
Oberon.MarkedViewer identifies the viewer in whose area the star lies. Commands which take it as 
their parameter are typically followed by an asterisk in the text. Whether the text contained in a text 
viewer, or a graph contained in a graphic viewer, or any other part of the marked viewer is taken as 
the actual parameter depends on how the command procedure is programmed. 

Finally, a most welcome property of the system should not remain unmentioned. It is a direct 
consequence of the persistent nature of global variables and becomes manifest when a command 
fails. Detected failures result in a trap. Such a trap should be regarded as an abnormal command 
termination. In the worst case, global data may be left in an inconsistent state, but they are not lost, 
and a next command can be initiated based on their current state. A trap opens a small viewer and 
lists the sequence of invoked procedures with their local variables and current values. This 
information helps a programmer to identify the cause of the trap. 

2.2.3. Tasks 

From the presentations above it follows that the Oberon System is distinguished by a highly flexible 
scheme of command activation. The notion of a command extends from the insertion of a single 
character and the setting of a marker to computations that may take hours or days. It is moreover 
distinguished by a highly flexible notion of operand selection not restricted to registered, named 
files. And most importantly, by the virtual absence of hidden states. The state of the system is 
practically determined by what is visible to the user. 

This makes it unnecessary to remember a long history of previously activated commands, started 
programs, entered modes, etc. Modes are in our view the hallmark of user-unfriendly systems. It 
should at this point have become obvious that the system allows a user to pursue several different 
tasks concurrently. They are manifest in the form of viewers containing texts, graphics, or other 
displayable objects. The user switches between tasks implicitly when choosing a different viewer as 
operand for the next command. The characteristic of this concept is that task switching is under 
explicit control of the user, and the atomic units of action are the commands. 

At the same time, we classify Oberon as a single-process (or single-thread) system. How is this 
apparent paradox to be understood?  Perhaps it is best explained by considering the basic mode of 
operation. Unless engaged in the interpretation of a command, the processor is engaged in a loop 
continuously polling event sources. This loop is called the central loop; it is contained in module 
Oberon which may be regarded as the system's heart. The two fixed event sources are the mouse 
and the keyboard. If a keyboard event is sensed, control is dispatched to the handler installed in the 
so-called focus viewer, designated as the one holding the caret. If a mouse event (key) is sensed, 
control is dispatched to the handler in which the cursor currently lies. This is all possible under the 
paradigm of a single, uninterruptible process. 

The notion of a single process implies non-interruptability, and therefore also that commands 
cannot interact with the user. Interaction is confined to the selection of commands before their 
execution. Hence, there exists no input statement in typical Oberon programs. Inputs are given by 
parameters supplied and designated before command invocation. 

This scheme at first appears as gravely restrictive. In practice it is not, if one considers single-user 
operation. It is this single user who carries out a dialog with the computer. A human might be 
capable of engaging in simultaneous dialogs with several processes only if the commands issued 
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are very time-consuming. We suggest that execution of time-consuming computations might better 
be delegated to loosely coupled compute-servers in a distributed system. 

The primary advantage of a system dealing with a single process is that task switches occur at 
user-defined points only, where no local process state has to be preserved until resumption. 
Furthermore, because the switches are user-chosen, the tasks cannot interfere in unexpected and 
uncontrollable ways by accessing common variables. The system designer can therefore omit all 
kinds of protection mechanisms that exclude such interference. This is a significant simplification. 

The essential difference between Oberon and multiprocess-systems is that in the former task 
switches occur between commands only, whereas in the latter a switch may be invoked after any 
single instruction. Evidently, the difference is one of granularity of action. Oberon's granularity is 
coarse, which is entirely acceptable for a single-user system. 

The system offers the possibility to insert further polling commands in the central loop. This is 
necessary if additional event sources are to be introduced. The prominent example is a network, 
where commands may be sent from other workstations. The central loop scans a list of so-called 
task descriptors. Each descriptor refers to a command procedure. The two standard events are 
selected only if their guard permits, i.e. if either keyboard input is present, or if a mouse event 
occurs. Inserted tasks must provide their own guard in the beginning of the installed procedure. 

The example of a network inserting commands, called requests, raises a question: what happens if 
the processor is engaged in the execution of another command when the request arrives? 
Evidently, the request would be lost unless measures are taken. The problem is easily remedied by 
buffering the input. This is done in every driver of an input device, in the keyboard driver as well as 
the network driver. The incoming signal triggers an interrupt, and the invoked interrupt handler 
accepts the input and buffers it. We emphasize that such interrupt handling is confined to drivers, 
system components at the lowest level. An interrupt does not evoke a task selection and a task 
switch. Control simply returns to the point of interruption, and the interrupt remains unnoticeable to 
programs. There exists, as with every rule, an exception: an interrupt due to keyboard input of the 
abort character returns control to the central loop. 

2.2.4. Tool Texts as Configurable Menus 

Certainly, the concepts of viewers specifying their own interpretation of mouse clicks, of commands 
invokable from any text on the display, of any displayed object being selectable as an interface 
between commands, and of commands being dialog-free, uninterruptible units of action, have 
considerable influence on the style of programming in Oberon, and they thoroughly change the 
style of using the computer. The ease and flexibility in the way pieces of text can be selected, 
moved, copied, and designated as command and as command parameters, drastically reduces the 
need for typing. The mouse becomes the dominant input device: the keyboard merely serves to 
input textual data. This is accentuated by the use of so-called tool texts, compositions of frequently 
used commands, which are typically displayed in the narrower system track of viewers. One simply 
doesn't type commands! They are usually visible somewhere already. Typically, the user composes 
a tool text for every project pursued. Tool texts can be regarded as individually configurable private 
menus. 

The rarity of issuing commands by typing them has the most agreeable benefit that their names can 
be meaningful words. For example, the copy operation is denoted by Copy instead of cp, rename 
by Rename instead of rn, the call for a file directory excerpt is named Directory instead of ls. The 
need for memorizing an infinite list of cryptic abbreviations, which is another hallmark of user-
unfriendly systems, vanishes. 

But the influence of the Oberon concept is not restricted to the style in which the computer is used. 
It extends also to the way programs are designed to communicate with the environment. The 
definition of the abstract type Text in the system's core suggests the replacement of files by texts as 
carrier of input and output data in very many cases. The advantage to be gained lies in the text's 
immediate editability. For example, the output of the command System.Directory produces the 
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desired excerpt of the file directory in the form of a (displayed) text. Parts of it or the whole may be 
selected and copied into other texts by regular editing commands (mouse clicks). Or, the compiler 
accepts texts as input. It is therefore possible to compile a text, execute the program, and to 
recompile the re-edited text without storing it on disk between compilations and tests. The 
ubiquitous editability of text together with the persistence of global data (in particular viewers) 
allows many steps that do not contribute to the progress of the task actually pursued to be avoided. 

2.2.5. Extensibility 

An important objective in the design of the Oberon System was extensibility. It should be easy to 
extend the system with new facilities by adding modules that make use of the already existing 
resources. Equally important, it should also reduce the system to those facilities that are currently 
and actually used. For example, a document editor processing documents free of graphics should 
not require the loading of an extensive graphics editor, a workstation operating as a stand-alone 
system should not require the loading of extensive network software, and a system used for clerical 
purposes need include neither compiler nor assembler. Also, a system introducing a new kind of 
display frame should not include procedures for managing viewers containing such frames. Instead, 
it should make use of existing viewer management. The staggering consumption of memory space 
by many widely used systems is due to violation of such fundamental rules of engineering. The 
requirement of many megabytes of store for an operating system is, albeit commonly tolerated, 
absurd and another hallmark of user-unfriendliness, or perhaps manufacturer friendliness. Its 
reason is none other than inadequate extensibility. 

We do not restrict this notion to procedural extensibility, which is easy to realize. The important 
point is that extensions may not only add further procedures and functions, but introduce their own 
data types built on the basis of those provided by the system: data extensibility. For example, a 
graphics system should be able to define its graphics frames based on frames provided by the 
basic display module and by extending them with attributes appropriate for graphics. 

This requires an adequate language feature. The language Oberon provides precisely this facility in 
the form of type extensions. The language was designed for this reason; Modula-2 would have 
been the choice, had it not been for the lack of a type extension feature. Its influence on system 
structure was profound, and the results have been most encouraging. In the meantime, many 
additions have been created with surprising ease. One of them is described at the end of this book. 
The basic system is nevertheless quite modest in its resource requirements (see Table at the end 
of Section 2.3). 

2.2.6. Dynamic Loading 

Activation of commands residing in modules that are not present in the store implies the loading of 
the modules and, of course, all their imports. Invoking the loader is, however, not restricted to 
command activation; it may also occur through programmed procedure calls. This facility is 
indispensable for a successful realization of genuine extensibility. Modules must be loadable on 
demand. For example, a document editor loads a graphics package when a graphic element 
appears in the processed document, but not otherwise. 

The Oberon System features no separate linker. A module is linked with its imports when it is 
loaded, and never before. As a consequence, every module is present only once, in main store 
(linked) as well as on backing store (unlinked, as file). Avoiding the generation of multiple copies in 
different, linked object files is the key to storage economy. Prelinked mega-files do not occur in the 
Oberon System, and every module is freely reusable. 

2.3. The system's structure 
The largest identifiable units of the system are its modules. It is therefore most appropriate to 
describe a system's structure in terms of its modules. As their interfaces are explicitly declared, it is 
also easy to exhibit their interdependence in the form of a directed graph. The edges indicate 
imports. 
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The module graph of a system programmed in Oberon is hierarchical, i.e. has no cycles. The 
lowest members of the hierarchy effectively import hardware only. We refer here to modules which 
contain device drivers. But module Kernel also belongs to this class; it "imports memory" and 
includes the disk driver. The modules on the top of the hierarchy effectively export to the user. As 
the user has direct access to command procedures, we call these top members command modules 
or tool modules. 

The hierarchy of the basic system is shown in a table of direct imports and as a graph in Figure 2.2. 
The picture is simplified by omitting direct import edges if an indirect path also leads from the 
source to the destination. For example, Files imports Kernel; the direct import is not shown, 
because a path from Kernel leads to Files via FileDir. 

 Text- Menu- Ober- Texts Fonts Input View Disp Modul Files FileDir Kernel 
  Frame View on 

System  x x x x x x x x x x x x 
Edit  x x x x x  
TextFrames   x x x x x x x x 
MenuViewers   x   x x x 
Oberon     x x x x x x x 
Texts      x     x 
Fonts           x 
Viewers         x 
Display             
Modules           x  x 
Files            x x 
FileDir             x 

Fig. 2.2. The structure of the Oberon core 

Module names in the plural form typically indicate the definition of an abstract data type in the 
module. The type is exported together with the pertinent operations. Examples are Files, Modules, 
Fonts, Texts, Viewers, MenuViewers, and TextFrames. Modules whose names are in singular form 
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typically denote a resource that the module manages, be it a global variable or a device. The 
variable or the device is itself hidden (not exported) and becomes accessible through the module's 
exported procedures. Examples are all device drivers, Input for keyboard and mouse, Kernel for 
memory and disk, and Display. Exceptions are the command modules whose name is mostly 
chosen according to the activity they primarily represent, like System, and Edit 

Module Oberon is, as already mentioned, the heart of the system containing the central loop to 
which control returns after each command interpretation, independent of whether it terminates 
normally or abnormally. Oberon exports several procedures of auxiliary nature, but primarily also 
the one allowing the invocation of commands (Call) and access to the command's parameter text 
through variable Oberon.Par. Furthermore, it contains global, exported variables: the log text. The 
log text typically serves to issue prompts and short failure reports of commands. The text is 
displayed in a log viewer that is automatically opened when module System is initialized. Module 
Oberon furthermore contains the two markers used globally on the display, the mouse cursor and 
the star pointer. It exports procedures to draw and to erase them, and allows the installation of 
different patterns for them. 

The system shown in Fig. 2.2. basically contains facilities for generating and editing texts, and for 
storing them in the file system. All other functions are performed by modules that must be added in 
the usual way by module loading on demand. This includes, notably, the compiler, network 
communication, document editors, and all sorts of programs designed by users. The high priority 
given in the system's conception to modularity, to avoiding unnecessary frills, and to concentrate on 
the indispensable in the core, has resulted in a system of remarkable compactness. Although this 
property may be regarded as of little importance in this era of falling costs of large memories, we 
consider it to be highly essential. We merely should like to draw the reader's attention to the 
correlation between a systems' size and its reliability. Also, we do not consider it as good 
engineering practice to consume a resource lavishly just because it happens to be cheap. The 
following table lists the core's modules and the major application modules, and it indicates the size 
of code (in words) and static variables (in bytes) and, the number of source program lines. 

module code data lines 

Kernel 1123 8244 263 
FileDir 1963 60 352 
Files 2360 148 505 
Modules 1214 112 226 
Input 186 32 79 
Fonts 628 56 115 
Display 1033 84 190 
Viewers 1324 104 206 
Texts 2906 204 537 
Oberon 1679 288 410 
MenuViewers 1513 56 208 
TextFrames 5786 292 874 
System 2134 72 418 
Edit 1096 1104 232 
 24945 10856 4615 
ORS 1762 992 319 
ORB 2348 408 437 
ORG 6699 34976 1125 
ORP 5994 144 974 
 16803 36520 2855 
Graphics 3484 564 685 
GraphicFrames 2832 288 498 
Draw 690 40 164 
Rectangles 649 40 118 
Curves 1765 72 241 
 9420 1004 1706 
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2.4. A tour through the chapters 
Implementation of a system proceeds bottom-up. Naturally, because modules on higher levels are 
clients of those on the lower levels and cannot function without the availability of their imports. 
Description of a system, on the other hand, is better ordered in the top-down direction. This is 
because a system is designed with its expected applications and functions in mind. Decomposition 
into a hierarchy of modules is justified by the use of auxiliary functions and abstractions and by 
postponing their more detailed explanation to a later time when their need has been fully motivated. 
For this reason, we will proceed essentially in the top-down direction. 

Chapters 3 - 5 describe the outer core of the system. Chapter 3 focusses on the dynamic aspects. 
In particular, this chapter introduces the fundamental operational units of task and command. 
Oberon's tasking model distinguishes the categories of interactive tasks and background tasks. 
Interactive tasks are represented on the display screen by rectangular areas, so-called viewers. 
Background tasks need not be connected with any displayed object. They are scheduled with low 
priority when interactions are absent. A good example of a background task is the memory garbage 
collector. Both interactive tasks and background tasks are mapped to a single process by the task 
scheduler. Commands in Oberon are explicit, atomic units of interactive operations. They are 
realized in the form of exported parameterless procedures and replace the heavier-weight notion of 
program known from more conventional operating systems. This chapter continues with a definition 
of a software toolbox as a logically connected collection of commands. It terminates with an outline 
of the system control toolbox.  

Chapter 4 explains Oberon's display system. It starts with a discussion of our choice of a 
hierarchical tiling strategy for the allocation of viewers. A detailed study of the exact role of Oberon 
viewers follows. Type Viewer is presented as an object class with an open message interface 
providing a conceptual basis for far-reaching extensibility. Viewers are then recognized as just a 
special case of so-called frames that may be nested. A category of standard viewers containing a 
menu frame and a frame of contents is investigated. The next topic is cursor handling. A cursor in 
Oberon is a marked path. Both viewer manager and cursor handler operate on an abstract logical 
display area rather than on individual physical monitors. This allows a unified handling of display 
requests, independent of number and types of monitors assigned. For example, smooth transitions 
of the cursor across screen boundaries are conceptually guaranteed. The chapter continues with 
the presentation of a concise and complete set of raster operations that is used to place textual and 
graphical elements in the display area. An overview of the system display toolbox concludes the 
chapter.  

Chapter 5 introduces text. Oberon distinguishes itself by treating Text as an abstract data type that 
is integrated in the central system. Numerous fundamental consequences are discussed. For 
example, a text can be produced by one command, edited by a user, and then consumed by a next 
command. Commands themselves can be represented textually in the form M.P, followed by a 
textual parameter list. Consequently, any command can be called directly from within a text (so-
called tool) simply by pointing at it with the mouse. However, the core of this chapter is a 
presentation of Oberon's text system as a case study in program modularization. The concerns of 
managing a text and displaying it are nicely separated. Both the text manager and the text display 
feature an abstract public interface as well as an internally hidden data structure. Finally in this 
chapter, Oberon's type-font management and the toolbox for editing are discussed. 

Chapters 6 - 9 describe the inner core, still in a top-down path. Chapter 6 explains the loader of 
program modules and motivates the introduction of the data type Module. The chapter includes the 
management of the memory part holding program code and defines the format in which compiled 
modules are stored as object files. Furthermore, it discusses the problems of binding separately 
compiled modules together and of referencing objects defined in other modules. 

Chapter 7 is devoted to the file system, a part of crucial importance, because files are involved in 
almost every program and computation. The chapter consist of two distinct parts, the first 
introducing the type File and describing the structure of files, i.e. their representation on disk 
storage with its sequential characteristics, the second describing the directory of file names and its 
organisation as a B-tree for obtaining fast searches. 
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The management of memory is the subject of Chapter 8. A single, central storage management 
was one of the key design decisions, guaranteeing an efficient and economical use of storage. The 
chapter explains the store's partitioning into specific areas. Its central concern, however, is the 
discussion of dynamic storage management in the partition called the heap. The algorithm for 
allocation (corresponding to the intrinsic procedure NEW) and for retrieval (called garbage 
collection) are explained in detail. 

At the lowest level of the module hierarchy we find device drivers. They are described in Chapter 9, 
which contains drivers for some widely accepted interface standards. The first is PS-2, a serial 
transmission with synchronous clock. This is used for the keyboard and for the Mouse. The second 
is SPI, a standard for bi-directional, serial transmission with synchronous clock. This is used for the 
"disk", represented by an SDI-card (flash memory), and for the network. And the third standard is 
RS-232 typically used for simple and slow data links. It is bidirectional and asynchronous. 

The second part of the book, consisting of Chapters 10 - 15, is devoted to what may be called first 
applications of the basic Oberon System. These chapters are therefore independent of each other, 
making reference to Chapters 3 - 9 only. 

Although the Oberon System is well-suited for operating stand-alone workstations, a facility for 
connecting a set of computers should be considered as fundamental. Module Net, which makes 
transmission of files among workstations connected by a bus-like network possible, is the subject of 
Chapter 10. It presents not only the problems of network access, of transmission failures and 
collisions, but also those of naming partners. The solutions are implemented in a surprisingly 
compact module which uses a network driver presented in Chapter 9. 

When a set of workstations is connected in a network, the desire for a central server appears. A 
central facility serving as a file distribution service, as a printing station, and as a storage for 
electronic mail is presented in Chapter 11. It emerges by extending the Net module of Chapter 10, 
and is a convincing application of the tasking facilities explained in Section 2.2. In passing we note 
that the server operates on a machine that is not under observation by a user. This circumstance 
requires an increased degree of robustness, not only against transmission failures, but also against 
data that do not conform to defined formats. 

The presented system of servers demonstrates that Oberon's single-thread scheme need not be 
restricted to single-user systems. The fact that every command or request, once accepted, is 
processed until completion, is acceptable if the request does not occupy the processor for too long, 
which is mostly the case in the presented server applications. Requests arriving when the 
processor is engaged are queued. Hence, the processor handles requests one at a time instead of 
interleaving them which, in general, results in faster overall performance due to the absence of 
frequent task switching. 

Chapter 12 describes the Oberon compiler. It translates source text in Oberon into target code, i.e. 
instruction sequences of some target computer. Its principles and techniques are explained in [6]. 
Both, source language and target architecture must be understood before studying a compiler. Both 
source language and the target computer's RISC architecture are presented in the Appendix. 

Although here the compiler appears as an application module, it naturally plays a distinguished role, 
because the system (and the compiler itself) is formulated in the language which the compiler 
translates into code. Together with the text editor it was the principal tool in the system's 
development. The use of straight-forward algorithms for parsing and symbol table organization led 
to a reasonably compact piece of software. A main contributor to this result is the language's 
definition: the language is devoid of complicated structures and rarely used embellishments. 

The compiler and thereby the chapter is partitioned into two main parts. The first is language-
specific, but does not refer to any particular target computer. It consist of the scanner and the 
parser. This part is therefore of most general interest to the readership. The second part is, 
essentially, language-independent, but is specifically tailored to the instruction set of the target 
computer. It is called the code generator. 
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Texts play a predominant role in the Oberon System. Their preparation is supported by the 
system's major tool, the editor. In Chapter 13 we describe another editor, one that handles graphic 
objects. At first, only horizontal and vertical lines and short captions are introduced as objects. The 
major difference to texts lies in the fact that their coordinates in the drawing plane do not follow from 
those of their predecessor automatically, because they form a set rather than a sequence. Each 
object carries its own, independent coordinates. The influence of this seemingly small difference 
upon an editor are far-reaching and permeate the entire design. There exist hardly any similarities 
between a text and a graphics editor. Perhaps one should be mentioned: the partitioning into three 
parts. The bottom module defines the respective abstract data structure for texts or graphics, 
together with, of course, the procedures handling the structure, such as searches, insertions, and 
deletions. The middle module in the hierarchy defines a respective frame and contains all 
procedures concerned with displaying the respective objects including the frame handler defining 
interpretation of mouse and keyboard events. The top modules are the respective tool modules 
(Edit, Draw). The presented graphics editor is particularly interesting in so far as it constitutes a 
convincing example of Oberon's extensibility. The graphics editor is integrated into the entire 
system; it embeds its graphic frames into menu-viewers and uses the facilities of the text system for 
its caption elements. And lastly, new kinds of elements can be incorporated by the mere addition of 
new modules, i.e. without expanding, even without recompiling the existing ones. Two examples 
are shown in Chapter 13 itself: rectangles and circles. 

The Draw System has been extensively used for the preparation of diagrams of electronic circuits. 
This application suggests a concept that is useful elsewhere too, namely a recursive definition of 
the notion of object. A set of objects may be regarded as an object itself and be given a name. 
Such an object is called a macro. It is a challenge to the designer to implement a macro facility 
such that it is also extensible, i.e. in no way refers to the type of its elements, not even in its input 
operations of files on which macros are stored. 

Chapter 14 presents two other tools, namely one used for installing an Oberon System on a bare 
machine, and one used to recover from failures of the file store. Although rarely employed, the first 
was indispensable for the development of the system. The maintenance or recovery tools are 
invaluable assets when failures occur. And they do! Chapter 14 covers material that is rarely 
presented in the literature.  

Chapter 15 is devoted to tools that are not used by the Oberon System presented so far, but may 
be essential in some applications. The first is a data link with a protocol based on the RS-232 
standard shown in Chapter 9. Another is a standard set of basic mathematical functions. And the 
third is a tool for creating new macros for the Draw System. 

The third part of this book is devoted to a detailed description of the hardware. Chapter 16 defines 
the processor, for which the compiler generates code. The target computer is a truly simple and 
regular processor called RISC with only 14 instructions, represented not by a commercial 
processor, but  implemented with an FPGA, a Field Programmable Gate Array. It allows its 
structure to be described in full detail. It is a straight-forward, von Neumann type device consisting 
of a register bank, an arithmetic-logic unit, including a floating-point unit. Typical optimization 
facilities, like pipelining and cache memory, have been omitted for the sake of transparency and 
simplicity. The processor circuit is described in the language Verilog. 

Chapter 17 describes the environment in which the processor is embedded. This environment 
consists of the interfaces to main memory and to all external devices. 
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3  The tasking system 
Eventually, it is the generic ability to perform every conceivable task that turns a computing device 
into a versatile universal tool. Consequently, the issues of modeling and orchestrating of tasks are 
fundamental in the design of any operating system. Of course, we cannot expect a single fixed 
tasking metaphor to be the ideal solution for all possible kinds of systems and modes of use. For 
example, different metaphors are probably appropriate in the cases of a closed mainframe system 
serving a large set of users in time-sharing mode on the one hand, and of a personal workstation 
that is operated by a single user at a high degree of interactivity on the other hand. 

 In the case of Oberon, we have consciously concentrated on the domain of personal 
workstations. More precisely, we have directed Oberon's tasking facilities towards a single-user 
interactive personal workstation that is possibly integrated into a local area network. 

We start the presentation in Section 3.1 with a clarification of the technical notion of task. In 
Section 3.2, we continue with a detailed explanation of the scheduling strategy. Then, in Section 
3.3, we introduce the concept of command. And finally, Section 3.4 provides an overview of 
predefined system-oriented toolboxes, i. e. coherent collections of commands devoted to some 
specific topic. Example topics are system control and diagnosis, display management, and file 
management. 

3.1. The concept of Task 
In principle, we distinguish two categories of tasks in Oberon: Interactive tasks and background 
tasks. Loosely speaking, interactive tasks are bound to local regions on the display screen and to 
interactions with their contents while, in contrast, background tasks are system-wide and not 
necessarily related to any specific displayed entity. 

3.1.1. Interactive tasks 

Every interactive task is represented by a so-called viewer. Viewers constitute the interface to 
Oberon's display-system. They embody a variety of roles that are collected in an abstract data 
type Viewer. We shall give a deeper insight into the display system in Chapter 4. For the moment 
it suffices to know that viewers are represented graphically as rectangles on the display screen 
and that they are implicit carriers of interactive tasks. Figure 3.1 shows a typical Oberon display 
screen that is divided up into seven viewers corresponding to seven simultaneously active 
interactive tasks. 

In order to get firmer ground under our feet, we now present the programmed declaration of type 
Viewer in a slightly abstracted form: 

Viewer = POINTER TO ViewerDesc; 

ViewerDesc = RECORD 
     X, Y, W, H: INTEGER; 
     handle: Handler; 
     state: INTEGER 
 END; 

X, Y, W, H define the viewer's rectangle on the screen, i.e. location X, Y of the lower left corner 
relative to the display origin, width W and height H. The variable state informs about the current 
state of visibility (visible, closed, covered), while handle represents the functional interface of 
viewers. The type of the handler is 

Handler = PROCEDURE (V: Viewer; VAR M: ViewerMsg); 

where ViewerMsg is some base type of messages whose exact declaration is of minor importance 
for the moment: 

ViewerMsg = RECORD ... (*basic parameter fields*) END; 



 27

 
Figure 3.1  Typical Oberon display configuration with tool track on the right 

However, we should point out the use of object-oriented terminology. It is justified because handle 
is a procedure variable (a handler) whose identity depends on the specific viewer. A call 
V.handle(V, M) can therefore be interpreted as the sending of a message M to be handled by the 
method of the receiving viewer V. 

We recognize an important difference between the standard object-oriented model and our 
handler paradigm. The standard model is closed in the sense that only a fixed set of messages is 
understood by a given class of objects. In contrast, the handler paradigm is open because it 
defines just the root (ViewerMsg) of a potentially unlimited tree of extending message types. For 
example, a concrete handler might be able to handle messages of type MyViewerMsg, where 

MyViewerMsg = RECORD (ViewerMsg) 
      mypar: MyParameters 
END; 

is an extended type of ViewerMsg. 

It is worth noting that our open object-oriented model is extremely flexible. Notably, extending the 
set of message types that are handled by an object is a mere implementation issue, that is, it has 
no effect at all on the object’s compile-time interface and on the system integrity. It is fair to 
mention though that such a high degree of extensibility does not come for free. The price to pay is 
the obligation of explicit message dispatching at runtime. The following Chapters will capitalize on 
this property. 

Coming back to the perspective of tasks, we note that each sending of a message to a viewer 
corresponds to an activation or reactivation of the interactive task that it represents. 
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3.1.2. Background Tasks 

Oberon background tasks are not connected a priori with any specific aggregate in the system. 
Seen technically, they are instances of an abstract data type consisting of type declarations Task 
and TaskDesc together with intrinsic operations NewTask, Install and Remove: 

Task = POINTER TO TaskDesc; 
TaskDesc = RECORD state: INTEGER; handle: PROCEDURE END; 

PROCEDURE NewTask(h: PROCEDURE; period: INTEGER): Task; 
PROCEDURE Install (T: Task); 
PROCEDURE Remove (T: Task); 

The procedures Install and Remove are called explicitly in order to transfer the state of the 
specified task from offline to idle and from idle to offline respectively. Installed tasks take their 
turns in becoming active, that is, in being executed. The installed handlers are simple, 
parameterless procedures specifying their own actions and conditions for execution, with one 
exception: Resumption may be delayed until a certain period of time has elapsed. This period is 
specified in milliseconds when a task is created. 

The following two examples of concrete background tasks may serve a better understanding of 
our explanations. The first one is a system-wide garbage collector collecting unused memory. The 
second example is a network monitor accepting incoming data on a local area network. In both 
examples the state of the task is captured entirely by global system variables. We shall come back 
to these topics in Chapters 8 and 10 respectively. 

We should not end this Section without drawing an important conclusion. Transfers of control 
between tasks are implemented in Oberon as ordinary calls and returns of ordinary procedures 
(procedure variables, actually). Preemption is not possible. From that we conclude that active 
periods of tasks are sequentially ordered and can be controlled by a single thread of control. This 
simplification pays well: Locks of common resources are completely dispensable and deadlocks 
are not a topic. 

3.2. The task scheduler 
We start from the general assumption that, at any given time, a number of well-determined tasks 
are ready in the system to be serviced. Remember that two categories of tasks exist: Interactive 
tasks and background tasks. They differ substantially in the criteria of activation or reactivation 
and in the priority of dispatching. Interactive tasks are (re)activated exclusively upon interactions 
by the user and are dispatched with high priority. In contrast, background tasks are polled with low 
priority. 

We already know that interactive tasks are activated by sending messages. The types of 
messages used for this purpose are InputMsg and ControlMsg reporting keyboard events and 
mouse events respectively. Slightly simplified, they are declared as 

InputMsg = RECORD (ViewerMsg) 
      id: INTEGER; 
      X, Y: INTEGER; 
      keys: SET; 
      ch: CHAR 
END; 

ControlMsg = RECORD (ViewerMsg) 
      id: INTEGER; 
      X, Y: INTEGER 
END; 

The field id specifies the exact request transmitted with this specific reactivation. In the case of 
InputMsg the possible requests are consume (the character specified by field ch) and track 
(mouse, starting from state given by keys and X, Y). In case of ControlMsg the choice is mark (the 
viewer at position X, Y) or neutralize. Mark means moving the global system pointer (typically 
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represented as a star-shaped mark) to the current position of the mouse. Neutralizing a viewer is 
equivalent to removing all marks and graphical attributes from this viewer.  

All tasking facilities are collected in one program module, called Oberon. In particular, the 
module's definition exposes the declarations of the abstract data type Task and of the message 
types InputMsg and ControlMsg. The module's most important contribution, however, is the task 
scheduler (often referred to as “Oberon loop”) that can be regarded as the system's dynamic 
center. 

Before studying the scheduler in detail we need some more preparation. We start with the 
institution of the focus viewer. By definition, this is a distinguished viewer that by convention 
consumes subsequent keyboard input. Note that we identify the focus viewer with the focus task, 
hereby making use of the one-to-one correspondence between viewers and tasks. 

Module Oberon provides the following facilities in connection with the focus viewer: A global 
variable FocusViewer, a procedure PassFocus for transferring the role of focus to a new viewer, 
and a defocus variant of ControlMsg for notifying the old focus viewer of such a transfer. 

The implementation details of the abstract data type Task are hidden from the clients. It is 
sufficient to know that all task descriptors are organized in a ring and that a pointer points to the 
previously activated task. The ring is guaranteed never to be empty because the above mentioned 
garbage collector is installed as a permanent sentinel task at system loading time. 

The following is a slightly abstracted version of the actual scheduler code operating on the task 
ring. It should be associated with procedure Loop in the module Oberon. 

  get mouse position and state of keys; 
  REPEAT 
    IF keyboard input available THEN read character 
      IF character is escape THEN 
        broadcast neutralize message to viewers 
      ELSIF character is mark THEN 
        send mark message to viewer containing mouse 
      ELSE send consume message to focus viewer 
      END; 
      get mouse position and state of keys 
    ELSIF at least one key pressed THEN 
      REPEAT 
        send track message to viewer containing mouse; 
        get mouse position and state of keys 
      UNTIL all keys released 
    ELSE (*no key pressed*) 
      send track message to viewer containing mouse; 
      take next task in ring as current task; 
      call its handler (if specified time period has elapsed) 
      get mouse position and state of keys 
    END 
  UNTIL FALSE 

The system executes a sequence of uninterrupted procedures (tasks). Interactive tasks are 
triggered by input data being present, either from the keyboard, the mouse, or other input sources. 
Background tasks are taken up in a round-robin manner. Interactive tasks have priority. 

Having consciously excluded exceptional program behavior in our explanations so far, some 
comments about the way of runtime continuation in the case of a failing task or, in other words, in 
the case of a trap are in order here. On the (abstract) level of tasks, we can identify three 
sequential actions of recovery taken after a program failure: 

   recovery after program failure = 
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   BEGIN save current system state; 
     call installed trap handler; 
     roll back to start of task scheduler 
   END 

Essentially, the system state is determined by the values of all global and local variables at a 
given time. The trap handler typically opens an extra viewer displaying the cause of the trap and 
the saved system state. Notice in the program fragment above that background tasks are 
removed from the ring after failing. This is an effective precaution against cascades of repeated 
failures. Obviously, no such precaution is necessary in the case of interactive tasks because their 
reactivation is under control of the user of the system. 

Summarizing the essence of the tasking system: Oberon is a multitasking system based on a two-
category model. Interactive tasks are interfacing with the display system and are scheduled with 
high priority upon user interactions. Background tasks are stand-alone and are scheduled with low 
priority. Task activations are modeled as message passing and eventually as calls of procedures 
assigned to variables. They are sequentially ordered and controlled by a single thread of control. 

3.3. The concept of command 
An operating system constitutes a general purpose platform on which application software 
packages can build upon. To software designers the platform appears as interface to "the system" 
and (in particular) to the underlying hardware. Unfortunately, interfaces defined by conventional 
operating systems often suffer from an all too primitive access mechanism that is based solely on 
the concept of "software interrupt" or "supervisor call" and on files taking the role of “connecting 
pipes". The situation is especially ironic when compared with the development of high-level 
programming languages towards extreme abstraction. 

We have put greatest emphasis in Oberon on closing the semantic gap between application 
software packages and the system platform. The result of our efforts is a highly expressive and 
consistent application programming interface (API) in the form of an explicit hierarchy of module 
definitions. Perhaps the most significant and most notable outcome of this approach is a collection 
of very powerful and system-wide abstract data types like Task, Frame, Viewer, File, Font, Text, 
Module, Reader, Scanner, Writer etc.. 

3.3.1. Atomic actions 

The most important generic function of any operating system is executing programs. A clarification 
of the term program as it is used in Oberon comprises two views: a static one and a dynamic one. 
Statically, an Oberon program is simply a package of software together with an entry point. More 
formally, an Oberon program is a pair (M*, P), where M is an arbitrary module, P is an exported 
parameterless procedure of M, and M* denotes the hierarchy consisting of M itself and of all 
directly and indirectly imported modules. Note that two hierarchies M* and N* are not generally 
disjoint, even if M and N are different modules. Rather, their intersection is a superset of the 
operating system.  

Viewed dynamically, an Oberon program is defined as an atomic action (often called command) 
operating on the global system state, where atomic means "without user interaction". This 
definition is just a necessary consequence of our model of non-preemptive task scheduling with 
the benefit of a single carrier thread. We can argue like this: When a traditional interactive 
program requires input from the user, , the current task is normally preempted in favor of another 
task that produces the required input data.  Therefore, a traditional interactive program can be 
viewed as a sequence of atomic actions interrupted by actions that possibly belong to other 
programs. Whereas in traditional systems these interruptions may occur at any time, in Oberon 
they can occur only after the completion of a task, of a command. 

Quintessentially, Oberon programs are represented in the form of commands that are in the form 
of exported parameterless procedures that do not interact with the user of the system. 
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Returning to the calling and execution of programs we now arrive at the following refined code 
version: 

   call program (M*, P) = BEGIN 
      load module hierarchy M*; call command P 
   END 

The system interface to the command mechanism itself is again provided by module Oberon. Its 
primary operation can be paraphrased as "call a command by its name and pass a list of actual 
parameters": 

PROCEDURE Call (name: ARRAY OF CHAR; par: ParList; VAR res: INTEGER); 

name is the name of the desired command in the form M.P, par is the list of actual parameters, 
and res is a result code. But in fact we have separated the setting of parameters from the actual 
call. Parameters are set by calling 

PROCEDURE SetPar (F: Display.Frame; T: Texts.Text; pos: INTEGER); 

and the actual call is achieved by calling 

PROCEDURE Call (name: ARRAY OF CHAR; VAR res: INTEGER); 

The pair (T, pos) specifies the starting position of a textual parameter list. F indicates the calling 
viewer. Notice the occurrence of yet another abstract data type of name Text that is exported by 
module Texts. We shall devote Chapter 5 to a thorough discussion of Oberon's text system. For 
the moment we can simply look at a text as a sequence of characters. 

The list of actual parameters is handed over to the called command by module Oberon in the form 
of an exported global variable Par: 

 Par: RECORD vwr: Viewers.Viewer; 
  frame: Display.Frame; 
  text: Texts.Text; 
  pos: INTEGER 
 END 

In principle, commands operate on the entire system and can access the current global state via 
the system's powerful abstract modular interface, of which the list of actual parameters is just one 
component. Another one is the so-called system log which is a system-wide protocol reporting on 
the progress of command execution and on exceptional events in chronological order. The log is 
represented as a global variable of type Text: 

   Log: Texts.Text; 

It should have become clear by now that implementers of commands may rely on a rich arsenal of 
abstract global facilities that reflect the current system state and make it accessible. In other 
words, they may rely on a high degree of system integration. Therefore, Oberon features an 
extraordinarily broad spectrum of mutually integrated facilities. For example, the system 
distinguishes itself by a complete integration of the abstract data types Viewer and Text that we 
encountered above. They will be the subject of Chapters 4 and 5. 

Module Oberon assists the integration of these types with the following conceptual features, of 
which the first two are familiar to us already: Standard parameter list for commands, system log, 
generic text selection, and generic copy viewer. At this point we should add a word of clarification 
to our use of the term "generic". It is synonymous with "interpretable individually by any viewer 
(interactive task)" and is typically used in connection with messages or orders whose receiver's 
exact identity is unknown. 

Let us now go into a brief discussion of the generic facilities without, however, leaving the level of 
our current abstraction and understanding. 

3.3.2. Generic text selection 
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Textual selections are characterized by a text, a stretch of characters within that text, and a time 
stamp. Without further qualification "the text selection" always means "the most recent text 
selection". It can be obtained programmatically by calling procedure GetSelection: 

   PROCEDURE GetSelection (VAR text: Texts.Text; VAR beg, end, time: LONGINT); 

The parameters specify the desired stretch of text starting at position beg and ending at end - 1 as 
well as the associated time stamp. The procedure is implemented in form of a broadcast of a so-
called selection message to all viewers. The declaration of this message is 

   SelectionMsg = RECORD (ViewerMsg) 
     time: INTEGER; 
     text: Texts.Text; 
     beg, end: INTEGER 
   END; 

3.3.3. Generic copy viewer 

Generic copying is synonymous with reproducing and cloning. It is the most elementary generic 
operation possible. Again, a variant of type ViewerMsg is used for the purpose of transmitting 
requests of the desired type: 

   CopyMsg = RECORD (ViewerMsg) vwr: Viewers.Viewer END 

Receivers of a copy message typically generate a clone of themselves and return it to the sender 
via field vwr. 

Let us now summarize this Section:. Oberon is an operating system that presents itself to its 
clients in the form of a highly expressive abstract modular interface that exports many powerful 
abstract data types like, for example, Viewer and Text. A rich arsenal of global data types and 
generic facilities serve the purpose of system integration at a high degree. Programs in Oberon 
are modeled as so-called commands, i.e. as exported parameterless procedures that do not 
interact with the user. The collection of commands provided by a module appears as its user 
interface. Parameters are passed to commands via a global parameter list, registered by the 
calling task in the central module Oberon. Commands operate on the global state of the system. 

3.4. Toolboxes 
Modules typically appear in three different forms. The first is a module that encapsulates some 
data, letting them be accessed only through exported procedures and functions. A good example 
is Module FileDir, encapsulating the file directory and protecting it from disruptive access. A 
second kind is the module representing an abstract data type, exporting a type and its associated 
operators. Typical examples are modules Files, Modules, Viewers, and Texts. A third kind is the 
collection of procedures pertaining to the same topic, such as module RS-232 handling 
communication over a serial line. 

Oberon adds a fourth form: the toolbox. By definition, this is a pure collection of commands in the 
sense of the previous section. Toolboxes distinguish themselves principally from the other forms 
of modules by the fact that they lie on top of the modular hierarchy. Toolbox modules are 
"imported" by system users at run-time. In other words, their definitions define the user interface. 
Typical examples are modules System and Edit. As a rule of thumb there exists a toolbox for 
every topic or application. 

As an example of a toolbox definition we quote an annotated version of module System: 
DEFINITION System; 

(*System management, Chapters 3 and 8*) 
  PROCEDURE SetUser; (*identification*) 
  PROCEDURE SetFont; (*for typed text*) 
  PROCEDURE SetColor; (*for typed text and graphics*) 
  PROCEDURE SetOffset; (*for typed text*) 
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  PROCEDURE Date; (*set or display time and date*) 
  PROCEDURE Collect; (*garbage*) 

(*Display management, Chapter 4*) 
  PROCEDURE Open; (*viewer*) 
  PROCEDURE Close; (*viewer*) 
  PROCEDURE CloseTrack; 
  PROCEDURE Recall; (*most recently closed viewer*) 
  PROCEDURE Copy; (*viewer*) 
  PROCEDURE Grow; (*viewer*) 
  PROCEDURE Clear; (*clear log*) 

(*Module management, Chapter 6*) 
  PROCEDURE Free; (*specified modules*) 
  PROCEDURE ShowCommands; (*of specified module*) 
  PROCEDURE ShowModules; (*list loaded modules*) 

(*File management, Chapter 7*) 
  PROCEDURE Directory; 
  PROCEDURE CopyFiles; 
  PROCEDURE RenameFiles; 
  PROCEDURE DeleteFiles;) 

(*System inspection, Chapter 8*) 
  PROCEDURE Watch; (*tasks, memory and disk storage*) 
END System; 

An important consequence of our integrated systems approach is the possibility of constructing a 
universal, interactive command interpreter bound to viewers of textual contents. If the text obeys 
the following syntax (specified in Extended Backus-Naur Form EBNF), we call it command tool: 

   CommandTool = { [Comment] CommandName [ParameterList] }. 

 If present, the parameter list is made available to the called command via fields text and pos in 
the global variable Par that is exported from module Oberon. Because this parameter list is 
interpreted individually by each command, its format is completely open. However, we postulate 
some conventions and rules for the purpose of a standardized user interface: 

1.) The elements of a textual parameter list are universal syntactical tokens like name, literal 
string, integer, real number, and special character. 

2.) An arrow "^" in the textual parameter list refers to the current text selection for continuation. In 
the special case of the arrow following the command name immediately, the entire parameter list 
is represented by the text selection. 

3.) An asterisk "*" in the textual parameter list refers to the currently marked viewer. Typically, the 
asterisk replaces the name of a file. In such a case the contents of the viewer marked by the 
system pointer (star) is processed by the command interpreter instead of the contents of a file. 

4.) An at-character "@" in the textual parameter list indicates that the selection marks the 
(beginning of the) text which is taken as operand. 

5.) A terminator-character "~" terminates the textual parameter list in case of a variable number of 
parameters. 

Because command tools are ordinary, editable texts (in contrast to menus in conventional 
systems) they can be customized "on the fly", which makes the system highly flexible. We refer 
again to Figure 3.1 that shows a typical Oberon screen layout consisting of two vertical tracks, a 
wider user track on the left and a narrow system track on the right. Three documents are 
displayed in the user track: A text, a graphic, and a picture. In the system track we find one log-
viewer displaying the system log, two tool-viewers making available the standard system tool and 
a customized private tool respectively. 

In concluding this Chapter, let us exemplify the concepts of command and tool by the system 
control section of the System toolbox. Consisting of the commands SetUser, Date, SetFont, 
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SetColor, and Collect it is used to control system-wide facilities. In detail, their function is installing 
the user's identification, displaying or setting the system date and time, presetting the system 
type-font for typed text, setting the system color, and activating the garbage collector. 

In summary, a toolbox is a special form of an Oberon module. It is defined as a collection of 
commands. Appearing at the top of the modular hierarchy the toolboxes in their entirety fix the 
system’s user interface. Command tools are sequences of textually represented command calls. 
They are editable and customizable. In a typical Oberon screen layout the tools are displayed in 
viewers within the system track. 
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4  The Display System 
The display screen is the most important part of the interface presented by a personal workstation 
to its users. At first sight, it simply represents a rectangular output area. However, in combination 
with the mouse, it quickly develops into a sophisticated interactive input/output platform of almost 
unlimited flexibility. It is mainly its Janus-faced characteristic that makes the display screen stand 
out from ordinary external devices to be managed by the operating system. In the current chapter 
we shall give more detailed insight into the reasons for the central position the display system 
takes within the operating system, and for its determining influence on the entire system 
architecture. In particular, we shall show that the display system is a natural basis or anchor for 
functional extensibility. 

4.1. The screen layout model 
In the early seventies, Xerox PARC in California launched the Smalltalk-project with the goal of 
conceiving and developing new and more natural ways to communicate with personal computers 
[Goldberg]. Perhaps the most conspicuous among several significant achievements of this 
endeavor is the idea of applying the desktop metaphor to the display screen. This metaphor 
comprises a desktop and a collection of possibly mutually overlapping pages of paper that are laid 
out on the desktop. By projecting such a configuration onto the surface of a screen we get the 
familiar picture of Figure 4.1 showing a collection of partially or totally visible rectangular areas on 
a background, so-called windows or viewers. 

Figure 4.1  Desktop showing partially overlapping viewers 

The desktop metaphor is used by many modern operating systems and user interface shells both 
as a natural model for the system to separate displayed data belonging to different tasks, and as a 
powerful tool for users to organize the display screen interactively, according to individual taste 
and preference. However, there are inherent drawbacks in the metaphor. They are primarily 
connected with overlapping. Firstly, any efficient management of overlapping viewers must rely on 
a subordinate management of (arbitrary) sub-rectangles and on sophisticated clipping operations. 
This is so because partially overlapped viewers must be partially restored under control of the 
viewer manager. For example, in Figure 4.1, rectangles a, b, and c in viewer B ought to be 
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restored individually after closing of viewer A. Secondly, there is a significant danger of covering 
viewers completely and losing them forever. And thirdly, no canonical heuristic algorithms exist for 
automatic allocation of screen space to newly opened viewers. 

Experience has shown that partial overlapping is desirable and beneficial in rare cases only, and 
so the additional complexity of its management [Binding, Wille] is hard to justify. Therefore, 
alternate strategies to structure a display screen have been looked for. An interesting class of 
established solutions can be titled as tiling. There are several variants of tiling [Cohen]. Perhaps 
the most obvious one (because the most unconstrained one) is based on iterated horizontal or 
vertical splitting of existing viewers. Starting with the full screen and successively opening viewers 
A, B, C, D, E, and F we get to a configuration as in Figure 4.2.  

Figure 4.2  Viewer configuration resulting from unconstrained tiling 

A second variant is hierarchic tiling. Again, the hierarchy starts with a full screen that is now 
decomposed into a number of vertical tracks, each of which is further decomposed into a number 
of horizontal viewers. We decided in favor of this kind of tiling in Oberon, mainly because the 
algorithm of reusing the area of a closed viewer is simpler and more uniform. For example, 
assume that in Figure 4.2 viewer F has been closed. Then, it is straightforward to reverse the 
previous opening operation by extending viewer E at its bottom end. However, if the closed viewer 
is B, no such simple procedure exists. For example, the freed area can be shared between 
viewers C and D by making them extend to their left. Clearly, no such complicated situations can 
occur in the case of hierarchic tiling. 

Hierarchic tiling is also used in Xerox PARC's Cedar system [Teitelman]. However, the Oberon 
variant differs from the Cedar variant in some respects. Firstly, Oberon supports quick temporary 
context switching by overlaying one track or any contiguous sequence of tracks with new layers. 
In Figure 4.3 a snapshot of a standard Oberon display screen is graphically represented. It 
suggests two original tracks and two levels of overlay, where the top layer is screen-filling. 
Secondly, unlike Cedar display screens, Oberon displays do not provide reserved areas for 
system-wide facilities, Standard Cedar screens feature a command row at the top and an icon row 
at the bottom. And thirdly, Oberon is based on a different heuristic strategy for the automatic 
placement of new viewers. As a Cedar default invariant, the area of every track is divided up 
evenly among the viewers in this track. When a new viewer is to be placed, the existing viewers in 
the track are requested to reduce their size and move up appropriately. The newly opened viewer 
is then allocated in the freed spot at the bottom. In contrast, Oberon normally splits the largest 
existing viewer in a given track into two halves of equal size. As an advantage of this latter 
allocation strategy we note that existing contents are kept stable. 

Figure 3.1  Typical Oberon 
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Figure 4.3  Overlay of tracks and sequences of tracks 

4.2. Viewers as objects 
Although everybody seems to agree on the meaning of the term viewer, no two different system 
designers actually do. The original role of a viewer as merely a separate display area has 
meanwhile become heavily overloaded with additional functionality. Depending on the underlying 
system are viewers' individual views on a certain configuration of objects, carriers of tasks, 
processes, applications, etc. Therefore, we first need to define our own precise understanding of 
the concept of viewer. 

The best guide to this aim is the abstract data type Viewer that we introduced in Chapter 3. We 
recapitulate: Type Viewer serves as a template describing viewers abstractly as “black boxes” in 
terms of a state of visibility, a rectangle on the display screen, and a message handler. The exact 
functional interface provided by a given variant of viewer is determined by the set of messages 
accepted. This set is structured as a customized hierarchy of type extensions. 

We can now obtain a more concrete specification of the role of viewer by identifying some basic 
categories of universal messages that are expected to be accepted by all variants of viewer. For 
example, we know that messages reporting about user interactions as well as messages defining 
a generic operation are universal. These two categories of universal messages document the 
roles of viewers as interactive tasks and as parts of an integrated system respectively. 

In total, there are four such categories. They are here listed together with the corresponding topics 
and message dispatchers: 

Dispatcher Topic Message  

Task scheduler dispatching of task reports user interaction 
Command interpreter processing of command defines generic operation 
Viewer manager organizing display area change of location or size 
Document manager operating on document change of contents or format 

These topics essentially define the role of Oberon viewers. In short, we may look at an Oberon 
viewer as a non-overlapped rectangular box on the screen both acting as an integrated display 
area for some objects of a document and representing an interactive task in the form of a sensitive 
editing area. 

Shifting emphasis a little and regarding the various message dispatchers as subsystems, we 
recognize immediately the role of viewers as integrators of the different subsystems via message-

first overlay 

second overlay 

original layer 
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based interfaces. In this light type Viewer appears as a common object-oriented basis of Oberon's 
subsystems. 

The topics listed above constitute some kind of backbone of the contents of the Chapters 3, 4 and 
5. Task scheduling and command interpreting are already familiar to us from Sections 3.2 and 3.3. 
Viewer management and text management will be the topics of Sections 4.4 and 5.2 respectively. 
Thereby, the built-in type Text will serve as a prime example of a document type. 

The activities that a viewer performs are basically controlled by events or, more precisely, by 
messages representing event notices. We shall explain this in detail in Sections 4.4 and 5.3 in the 
cases of an abstract class of standard viewers and a class of viewers displaying standard text 
respectively. 

Here is a preliminary overview of some archetypal kinds of message: 

• After each key stroke a keyboard message containing the typed character is sent to the 
current focus viewer and after each mouse click a mouse message reporting the new 
state of the mouse is sent to the viewer containing the current mouse position. 

• A message often represents some generic operation that is expected to be interpreted 
individually by its recipients. Obvious examples in our context are "return current textual 
selection", "copy-over stretch of text", and "produce a copy (clone)". Notice that generic 
operations are the key to extensibility. 

• In a tiling viewer environment, every opening of a new viewer and every change of size or 
location of an existing viewer has an obvious effect on adjacent viewers. The viewer 
manager therefore issues a message for every affected viewer requesting it to adjust its 
size appropriately. 

• Whenever the contents or the format of a document has changed, a message notifying all 
visible viewers of the change is broadcast. Notice that broadcasting messages by a model 
(document) to the entirety of its potential views (viewers) is an interesting implementation 
of the famous MVC (model-view-controller) pattern that dispenses models from “knowing” 
(registering) their views. 

4.3. Frames as Basic Display Entities 
When we introduced viewers in Chapter 3 and in the previous section, we simplified with the aim 
of abstraction. We know already that viewers appear as elements of second order in the tiling 
hierarchy. Having treated them as black boxes so far we have not revealed anything about the 
continuation of the hierarchy. As a matter of fact, viewers are neither elementary display entities 
nor atoms. They are just a special case of so-called display frames. Display frames or frames in 
short are arbitrary rectangles displaying a collection of objects or an excerpt of a document. In 
particular, frames may recursively contain other frames, a capability that makes them an 
extremely powerful tool for any display organizer. 

The type Frame is declared as 

   Frame = POINTER TO FrameDesc; 

   FrameDesc = RECORD 
      next, dsc: Frame; 
      X, Y, W, H: INTEGER; 
      handle: Handler 
   END; 

The components next and dsc are connections to further frames. Their names suggest a multi-
level recursive hierarchical structure: next points to the next frame on the same level, while dsc 
points to the (first) descendant, i.e. to the next lower level of the hierarchy of nested frames. X, Y, 
W, H, and the handler handle serve the original purpose to that we introduced them. In particular, 
the handler allows frames to react individually on the receipt of messages. Its type is 



 39

    Handler = PROCEDURE (F: Frame; VAR M: FrameMsg); 

where FrameMsg represents the root of a potentially unlimited tree hierarchy of possible 
messages to frames: 

    FrameMsg = RECORD END; 

Having now introduced the concept of frames, we can reveal the whole truth about viewers. As a 
matter of fact, type Viewer is a derived type, it is a type extension of Frame: 

    Viewer = POINTER TO ViewerDesc; 

    ViewerDesc = RECORD (FrameDesc) 
      state: INTEGER 
    END; 

These declarations formally express the fact that viewers are nothing but a special case (or 
variant or subclass) of general frames, additionally featuring a state of visibility. In particular, 
viewers inherit the hierarchical structure of frames. This is an extremely useful property 
immediately opening an unlimited spectrum of possibilities for designers of a specific subclass of 
viewers to organize the representing rectangular area. For example, the area of viewers of, say, 
class Desktop may take the role of a background being covered by an arbitrary collection of 
possibly mutually overlapping frames. In other words, our decision of using a tiling viewer scheme 
globally can easily be overwritten locally. 

An even more important example of a predefined structure is provided by the abstract class of so-
called menu viewers whose shape is familiar from most snapshots taken of the standard Oberon 
display screen. A menu viewer consists of a thin rectangular boundary line and an interior area 
being vertically decomposed into a menu region at the top and a contents region at the bottom 
(see Figure 4.4). 

 
Figure 4.4  The compositional structure of a menu viewer 

In terms of data structures, the class of menu viewers is defined as a type extension of Viewer 
with an additional component menuH specifying the height of the menu frame: 

   MenuViewer = POINTER TO MenuViewerDesc; 

   MenuViewerDesc = RECORD (ViewerDesc) 
      menuH: INTEGER 
   END; 

Each menu viewer V specifies exactly two descendants: The menu frame V.dsc and the frame of 
main contents or main frame V.dsc.next. Absolutely nothing is fixed about the contents of the two 
descendant frames. In the standard case, however, the menu frame is a text frame, displaying a 
line of commands in inverse video mode. By definition, the nature of the main frame specifies the 
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type of the viewer. If it is a text frame as well, then we call the viewer a text viewer, if it a graphics 
frame, we call it a graphics viewer etc. 

4.4. Display management 
Oberon's display system comprises two main topics: Viewer management and cursor handling. 
Let us first turn to the much more involved topic of viewer management and postpone cursor 
handling to the end of this Section. Before we can actually begin our explanations we need to 
introduce the concept of the logical display area. It is modeled as a two-dimensional Cartesian 
plane housing the totality of objects to be displayed. The essential point of this abstraction is a 
rigorous decoupling of any aspects of physical display devices. As a matter of fact, any concrete 
assignment of display monitors to certain finite regions of the display area is a pure matter of 
configuring the system. 

Being a subsystem of a system with a well-defined modular structure the display system appears 
in the form of a small hierarchy of modules. Its core is a linearly ordered set consisting of three 
modules: Display, Viewers, and MenuViewers, the latter building upon the formers. Conceptually, 
each module contributes an associated class of display-oriented objects and a collection of related 
service routines. 

The following is an overview of the subsystem viewer management. Modules on upper lines 
import modules on lower lines and types on upper lines extend types on lower lines. 

Module Type Service  

MenuViewer Viewer Message handling for menu viewers 
Viewers Viewer Tiling viewer management 
Display Frame Block-oriented raster operations 

Inspecting the column titled Type we recognize precisely our familiar types Frame, Viewer, and 
MenuViewer respectively, where the latter is an abbreviation of MenuViewers.Viewer. 

In addition to the core modules of the display system a section in module Oberon provides a 
specialized application programming interface (API) that simplifies the use of the viewer 
management package by applications in the case of standard Oberon display configurations. We 
shall come back to this topic in Section 4.6. 

For the moment let us concentrate on the core of the viewer management and in particular on the 
modules Viewers and MenuViewers, saving the discussion of the module Display for the next 
section. Typically, we start the presentation of a module by listing and commenting its definition, 
and we refer to subsequent listings for its implementation. 

4.4.1. Viewers 

Focusing first on module Viewers we can roughly define the domain of its responsibility as 
"initializing and maintaining the global layout of the display area". From the previous discussion 
we are well acquainted already with the structure of the global display space as well as with its 
building blocks: The display area is hierarchically tiled with display frames, where the first two 
levels in the frame hierarchy correspond to tracks and viewers respectively. 

This is the formal definition: 
DEFINITION Viewers; 
    IMPORT Display; 

    CONST restore = 0; modify = 1; suspend = 2; (*message ids*) 

    TYPE Viewer = POINTER TO ViewerDesc; 

      ViewerDesc = RECORD (Display.FrameDesc) 
         state: INTEGER 
      END; 
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     ViewerMsg = RECORD (Display.FrameMsg) 
        id: INTEGER; 
        X, Y, W, H: INTEGER; 
        state: INTEGER 
      END; 

    VAR curW: INTEGER; 

    (*track handling*) 
    PROCEDURE InitTrack (W, H: INTEGER; Filler: Viewer); 
    PROCEDURE OpenTrack (X, W: INTEGER; Filler: Viewer); 
    PROCEDURE CloseTrack (X: INTEGER); 

    (*viewer handling*) 
    PROCEDURE Open (V: Viewer; X, Y: INTEGER); 
    PROCEDURE Change (V: Viewer; Y: INTEGER); 
    PROCEDURE Close (V: Viewer); 

    (*miscellaneous*) 
    PROCEDURE This (X, Y: INTEGER): Viewer; 
    PROCEDURE Next (V: Viewer): Viewer; 

    PROCEDURE Recall (VAR V: Viewer); 
    PROCEDURE Locate (X, H: INTEGER; VAR fil, bot, alt, max: Viewer); 

    PROCEDURE Broadcast (VAR M: Display.FrameMsg); 
END Viewers. 

Some comments: A first group of procedures consisting of InitTrack, OpenTrack, and CloseTrack 
supports the track structure of the display area. InitTrack creates a new track of width W and 
height H by partitioning off a vertical strip of width W from the display area. In addition, InitTrack 
initializes the newly created track with a filler viewer that is supplied as a parameter. The filler 
viewer essentially serves as background filling up the track at its top end. It reduces to height 0 if 
the track is covered completely by productive viewers. 

Configuring the display area is part of system initialization after startup. It amounts to executing a 
sequence of steps of the form 

NEW(Filler); Filler.handle := HandleFiller; InitTrack(W, H, Filler) 

where HandleFiller is supposed to handle messages that require modifications of size and cursor 
drawing. 

The global variable curW indicates the width of the already configured part of the display area. 
Note that configuring starts with x = 0 and is non-reversible in the sense that the grid defined by 
the initialized tracks cannot be refined later. However, remember that it can be coarsened at any 
time by overlaying a contiguous sequence of existing tracks by a single new track. 

Procedure OpenTrack serves exactly this purpose. The track (or sequence of tracks) to be 
overlaid in the display-area must be spanned by the segment [X, X + W). Procedure CloseTrack is 
inverse to OpenTrack. It is called to close the (topmost) track located at X in the display area, and 
to restore the previously covered track (or sequence of tracks). 

The next three procedures are used to organize viewers within individual tracks. Procedure Open 
allocates a given viewer at a given position. More precisely, Open locates the viewer containing 
the point (X, Y), splits it horizontally at height Y, and opens the viewer V in the lower part of the 
area. In the special case of Y coinciding with the upper boundary line of the located viewer this is 
closed automatically. Procedure Change allows to change the height of a given viewer V by 
moving its upper boundary line to a new location Y (within the limits of its neighbors). Procedure 
Close removes the given viewer V from the display area. Figure 4.5 makes these operations clear. 
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Figure 4.5  Basic operations on viewers 

The last group of procedures provides miscellaneous services. Procedure This identifies the 
viewer displayed at (X, Y). Procedure Next returns the next upper neighbor of a given displayed 
viewer V. Procedure Recall allows recalling and restoring the most recently closed viewer. Locate 
is a procedure that assists heuristic allocation of new viewers. For any given track and desired 
minimum height, procedure Locate offers a choice of some distinguished viewers in the track: the 
filler viewer, the viewer at the bottom, an alternative choice, and the viewer of maximum height. 
Finally, procedure Broadcast broadcasts a message to the display area, that is, sends the given 
message to all viewers that are currently displayed. 

It is now a good time to throw a glance behind the scenes. Let us start with revealing module 
Viewer’s internal data structure. Remember that according to the principle of information hiding an 
internal data structure is fully private to the containing module and accessible through the 
module’s procedural interface only. Figure 4.6 shows a data structure view of the display snapshot 
taken in Figure 4.4. Note that the overlaid tracks and viewers are still part of the internal data 
structure. 

In the data structure we recognize an anchor that represents the display area and points to a list 
of tracks, each of them in turn pointing to a list of viewers, each of them in turn pointing to a list of 
arbitrary sub-frames. Both the list of tracks and the list of viewers are closed to a ring, where the 
filler track (filling up the display area) and the filler viewers (filling up the tracks) act as anchors. 
Additionally, each track points to a (possibly empty) list of tracks lying underneath. These frames 
are invisible on the display, and shaded in Figure 4.6. 
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Figure 4.6  A snapshot of the internal data structure corresponding to Figure 4.3 

Technically, the track descriptor type TrackDesc is a private extension of the viewer descriptor 
type ViewerDesc. Repeating the declarations of viewer descriptors and frame descriptors, we get 
to this hierarchy of types: 

TrackDesc = RECORD (ViewerDesc) 
  under: Display.Frame 
END; 
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ViewerDesc = RECORD (FrameDesc) 
  state: INTEGER 
END; 

FrameDesc = RECORD 
  next, dsc: Frame; 
  X, Y, W, H: INTEGER; 
  handle: Handler 
END; 

It is noteworthy that the data structure of the viewer manager is heterogeneous with Frame as 
base type. It provides a nice example of a nested hierarchy of frames with the additional property 
that the first two levels correspond to the first two levels in the type hierarchy defined by Track, 
Viewer, and Frame. 

In an object-oriented environment objects are autonomous entities in principle. However, they may 
be bound to some higher instance (other than the system) temporarily. For example, we can look 
at the objects belonging to a module's private data structure as bound to this module. Deciding if 
an object is currently bound is then a fundamental problem. In the case of viewers, this 
information is contained in an extra instance variable called state. 

As a system invariant, we have for every viewer V 

V is bound to module Viewers  ⇔  V.state # 0 

If we call visible any displayed viewer and suspended any viewer that is covered by an overlaying 
track we can refine this invariant to 

{V is visible  ⇔  V.state > 0 } and { V is suspended  ⇔  V.state < 0 } 

In addition, more detailed information about the kind of viewer V is given by the magnitude 
|V.state|: 

V.state kind of viewer 

 0 closed 
 1 filler 
-1 productive 

The magnitude |V.state| is kept invariant by module Viewers. It could be used, for example, to 
distinguish different levels of importance or preference with the aim of supporting a smarter 
algorithm for heuristic allocation of new viewers. The variable state is treated as read-only by 
every module other than Viewers. 

We are now sufficiently prepared to understand how the exported procedures of module Viewers 
work behind the scenes. All of them operate on the internal dynamic data structure just explained. 
Some use the structure as a reference only or operate on individual elements (procedures This, 
Next, Locate, Change), others add new elements to the structure (procedures InitTrack, 
OpenTrack, Open), and even others remove elements (procedures CloseTrack, Close). Most 
procedures have side-effects on the size or state of existing elements. 

Let us now change perspective and look at module Viewers as a general low-level manager of 
viewers whose exact contents are unknown to it (and whose controlling software might have been 
developed years later). In short, let us look at module Viewers as a manager of black boxes. Such 
an abstraction immediately makes it impossible for the implementation to call fixed procedures for, 
say, changing a viewer's size or state. The facility needed is a message-oriented interface. 

TYPE ViewerMsg = RECORD (Display.FrameMsg) 
   id: INTEGER; 
   X, Y, W, H: INTEGER; 
   state: INTEGER 
 END; 
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There exist three variants of Viewer messages, discriminated by the field id: Restore contents, 
modify height (extend or reduce at bottom), and suspend (close temporarily or permanently). The 
additional components of the message inform about the desired new location, size, and state. 

The following table lists senders, messages, and recipients of viewer messages. 

Originator Message Recipients  

OpenTrack Suspend temporarily Viewers covered by opening track 
CloseTrack Suspend permanently Viewers in closing track 
Open Modify or suspend Upper neighbor of opening viewer 
Change Modify Upper neighbor of changing viewer 
Close Suspend permanently Closing viewer 

4.4.2. Menu Viewers 

So far, we have treated viewers abstractly as black boxes. Our next step is now to focus on a 
special class of viewers called menu viewers. Remembering the definition given earlier we know 
that a menu viewer is characterized by a structure consisting of two vertically tiled “descendant” 
frames, a menu frame at the top and a frame of contents at the bottom. Because the nature and 
contents of these frames are typically unknown by their “ancestor” (or “parent”) viewer, a collection 
of abstract messages is again a postulating form of interface. As net effect, the handling of menu 
viewers boils down to a combination of preprocessing, transforming and forwarding messages to 
the descendant frames. In short, the display space in Oberon is hierarchically organized and 
message passing within the display space obeys the pattern of strict parental control. 

Again, we start our more detailed discussion with a module interface definition: 

DEFINITION MenuViewers; 
  IMPORT Viewers, Display; 
  CONST extend = 0; reduce = 1; move = 2; (*message ids*) 

  TYPE 
    Viewer = POINTER TO ViewerDesc; 
    ViewerDesc = RECORD (Viewers.ViewerDesc) 
      menuH: INTEGER 
    END; 

   ModifyMsg = RECORD (Display.FrameMsg) 
      id: INTEGER; 
      dY, Y, H: INTEGER 
    END; 

  PROCEDURE Handle (V: Display.Frame; VAR M: Display.FrameMsg); 
  PROCEDURE New (Menu, Main: Display.Frame; menuH, X, Y: INTEGER): Viewer;  
END MenuViewers. 

The interface represented by this definition is conspicuously narrow. There are just two 
procedures: A generator procedure New and a standard message handler Handle. The generator 
returns a newly created menu viewer displaying the two (arbitrary) frames passed as parameters. 
The message handler implements the entire “behavior” of an object and in particular the above 
mentioned message dispatching functionality. 

Message handlers in Oberon are implemented in the form of procedure variables that obviously 
must be initialized properly at object creation time. In other words, some concrete behavior must 
explicitly be bound to each object, where different instances of the same object type could 
potentially have a different behavior and/or the same instance could change its behavior during its 
lifetime. Our object model is therefore instance-centered. 

Conceptually, the creation of an object is an atomic action consisting of three basic steps: 

allocate memory block; install message handler; initialize state variables 
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In the case of a standard menu viewer V this can be expressed as 

NEW(V); V.handle := Handle; V.dsc := Menu; V.dsc.next := Main; V.menuH := menuH 

With that, calling New is equivalent with 

create V; open V at X, Y 

where opening V needs assistance by module Viewers. 

The implementation of procedure Handle embodies the standard strategy of message handling by 
menu viewers. The following code is a coarse-grained view of it. 

Message handler for menu viewers 

 IF message reports about user interaction THEN 
    IF variant is mouse tracking THEN 
      IF mouse is in menu region THEN 
        IF mouse is in upper menu region and left key is pressed THEN 
          handle changing of viewer 
        ELSE delegate handling to menu-frame 
        END 
      ELSE 
        IF mouse is in main-frame THEN delegate handling to main-frame END 
      END 
    ELSIF variant is keyboard input THEN 
      delegate handling to menu frame; 
      delegate handling to main frame 
    END 
  ELSIF message defines generic operation THEN 
    IF message requests copy (clone) THEN 
      send copy message to menu frame to get a copy (clone); 
      send copy message to main frame to get a copy (clone);  
      create menu viewer clone from copies 
    ELSE 
      delegate handling to menu frame; 
      delegate handling to main frame 
    END 
  ELSIF message reports about change of contents THEN 
     delegate handling to menu frame; 
     delegate handling to main frame 
  ELSIF message requests change of location or size THEN 
    IF operation is restore THEN 
       draw viewer area and border; 
       send modify message to menu frame to make it extend from height 0; 
       send modify message to main frame to make it extend from height 0 
    ELSIF operation is modify THEN 
       IF operation is extend THEN 
         extend viewer area and border; 
         send modify message to menu frame to make it extend; 
         send modify message to main frame to make it extend 
       ELSE (*reduce*) 
         send modify message to main frame to make it reduce; 
         send modify message to menu frame to make it reduce; 
         reduce viewer area and border 
       END 
    ELSIF operation is suspend THEN 
       send modify message to main frame to make it reduce to height 0; 
       send modify message to menu frame to make it reduce to height 0 
    END 
  END 
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In principle, the handler acts as a message dispatcher that either processes a message directly 
and/or delegates its processing to the descendant frames. Note that the handler's main alternative 
statement discriminates precisely among the four basic categories of messages. 

From the above outlined algorithm handling copy messages, that is, requests for generating a 
copy or clone of a menu viewer, we can derive a general recursive scheme for the creation of a 
clone of an arbitrary frame: 

send copy message to each element in the list of descendants; 
generate copy of the original frame descriptor; 
attach copies of descendants to the copy of descriptor 

The essential point here is the use of new outgoing messages in order to process a given 
incoming message. We can regard message processing as a transformation that maps incoming 
messages into a set of outgoing messages, with possible side-effects. The simplest case of such 
a transformation is known as delegation. In this case, the input message is simply passed on to 
the descendant(s). 

As a fine point we clarify that the above algorithm is designed to create a deep copy of a 
composite object (a menu viewer in our case). If a shallow copy would be desired, the 
descendants would not have to be copied, and the original descendants instead of their copies 
would be attached to the copy of the composite object. 

Another example of message handling is provided by mouse tracking. Assume that a mouse 
message is received by a menu viewer while the mouse is located in the upper part of its menu 
frame and the left mouse key is kept down. This means "change viewer's height by moving its top 
line vertically". No message to express the required transformation of the sub-frames yet exists. 
Consequently, module MenuViewers takes advantage of our open (extensible) message model 
and simply introduces an appropriate message type called ModifyMsg: 

ModifyMsg = RECORD (Display.FrameMsg) 
  id: INTEGER; 
  dY, Y, H: INTEGER 
END; 

The field id specifies one of two variants: extend or reduce. The first variant of the message 
requests the receiving frame to move by the vertical translation vector dY and then to extend to 
height H at bottom. The second variant requests the frame to reduce to height H at bottom and 
then to move by dY. In both cases Y indicates the Y-coordinate of the new lower-left corner. 
Figure 4.7 summarizes this graphically. 

Messages arriving from the viewer manager and requesting the receiving viewer to extend or 
reduce at its bottom are also mapped into messages of type ModifyMsg. Of course, no translation 
is needed in these cases, and dY is 0. 

The attentive reader might perhaps have asked why the standard handler is exported by module 
MenuViewers at all. The thought behind is reusability of code. For example, a message handler 
for a subclass of menu viewers could be implemented effectively by reusing menu viewer's 
standard handler. After having handled all new or differing cases first it would simply (super-)call 
the standard handler subsequently. 
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Figure 4.7  The modify frame operation 

4.4.3. Cursor Management 

Traditionally, a cursor indicates and visualizes on the screen the current location of the caret in a 
text or, more generally, the current focus of attention. A small arrow or similar graphic symbol is 
typically used for this purpose. In Oberon, we have slightly generalized and abstracted this 
concept. A cursor is a path in the logical display area whose current position can be made visible 
by a marker. 

The viewer manager and the cursor handler are two concurrent users of the same display area. 
Actually, we should imagine two parallel planes, one displaying viewers and the other displaying 
cursors. If there is just one physical plane we take care of painting markers non-destructively, for 
example in inverse-video mode. Then, no precondition must be established before drawing a 
marker. However, in the case of a viewer task painting destructively in its viewer's area, the area 
must be locked first after turning invisible all markers in the area. 

The technical support of cursor management is again contained in module Oberon. The 
corresponding application programming interface is 

DEFINITION Oberon; 
    TYPE Marker = RECORD 
         Fade, Draw: PROCEDURE (x, y: INTEGER) 
       END; 

      Cursor = RECORD 
         marker: Marker; on: BOOLEAN; X, Y: INTEGER 
       END; 

    VAR Arrow, Star: Marker; 
       Mouse, Pointer: Cursor; 

    PROCEDURE OpenCursor (VAR c: Cursor); 
    PROCEDURE FadeCursor (VAR c: Cursor); 
    PROCEDURE DrawCursor (VAR c: Cursor; VAR m: Marker; X, Y: INTEGER); 
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    PROCEDURE MarkedViewer (): Viewers.Viewer; 
    PROCEDURE RemoveMarks (X, Y, W, H: INTEGER); 
      ... 
  END Oberon. 

The state of a cursor is given by its mode of visibility (on), its position (X, Y) in the display area, 
and the current marker. Marker is an abstract data type with an interface consisting of two 
operations Fade and Draw. The main benefit we can draw from this abstraction is once more 
conceptual independence of the underlying hardware. For example, Fade and Draw can adapt to 
a given monitor hardware with built-in cursor support or, in case of absence of such support, can 
simply be implemented as identical procedures (an involution) drawing the marker pattern in 
inverse video mode. 

The functional interface to cursors consists of three operations: OpenCursor to open a new cursor, 
FadeCursor to switch off the marker of an open cursor, and DrawCursor to extend the path of a 
cursor to a new position and mark it with the given marker. We emphasize that the marker 
representing a given cursor can change its shape dynamically on the fly. 

Two cursors, Mouse and Pointer are predefined. They represent the mouse and an interactively 
controlled global system pointer respectively. Typically (but not necessarily) these cursors are 
visualized by the built-in markers Arrow (a small arrow pointing to north-west) and Star (a star 
symbol) respectively. The pointer can be used to mark any displayed object. It serves primarily as 
an implicit parameter of commands. 

Two assisting service procedures MarkedViewer and RemoveMarks are added in connection with 
the predefined cursors. MarkedViewer returns the viewer that is currently marked by the pointer. 
Its resulting value is equivalent to Viewers.This(Pointer.X, Pointer.Y). RemoveMarks turns 
invisible the predefined cursors within a given rectangle in the display area. This procedure is 
used to lock the rectangle for its caller. 

Summary of the essential points and characteristics of Oberon's concept of cursor handling: 

1.) By virtue of the use of abstract markers and of the logical display area, any potential hardware 
dependence is encapsulated in system modules and is therefore hidden from the application 
programmer. Cursors are moving uniformly within the whole display area, even across screen 
boundaries. 

2.) Cursor handling is decentralized by delegating it to the individual handlers that are installed in 
viewers. Typically, a handler reacts on the receipt of a mouse tracking message by drawing the 
mouse cursor at the indicated new position. The benefit of such individualized handling is 
flexibility. For example, a smart local handler might choose the shape of the visualizing marker 
depending on the exact location, or it might force the cursor onto a grid point. 

3.) Even though cursor handling is decentralized, there is some intrinsic support for cursor 
drawing built into the declaration of type Cursor. Cursors are objects of full value and, as such, 
can "memorize" their current state. Consequently, the interface operations FadeCursor and 
DrawCursor need to refer to the desired future state only. 

4.) Looking at the viewer manager as one user of the display area, the cursor handler is a second 
(and logically concurrent) user of the same resource. If there is just one physical plane 
implementing the display area, any region must be locked by a current user before destructive 
painting. Therefore, markers are usually painted non-destructively in inverse-video mode. 

Let us now recapitulate the entire Section. The central resource managed by the display 
subsystem is the logical display area whose purpose is abstraction from the underlying display 
monitor hardware. The display area is primarily used by the viewer manager for the 
accommodation of tracks and viewers, which are merely the first two levels of a potentially 
unlimited nested hierarchy of display frames. For example, standard menu viewers contain two 
subordinate frames: A menu frame and a main frame of contents. Viewers are treated as black 
boxes by the viewer manager and are addressed via messages. Viewers and, more generally 
frames, are used as elements of message-based interfaces connecting the display subsystem 
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with other subsystems like the task scheduler and the various document managers. Finally, the 
display area is also the living room of cursors. In Oberon, a cursor is a marked path. Two standard 
cursors Mouse and Pointer are predefined. 

4.5. Raster Operations 
In Section 4.4 we introduced the display area as an abstract concept, modeled as a two-
dimensional Cartesian plane. So far, this view of the display space was sufficient because we 
were interested in its global structure only and ignored contents completely. However, if we are 
interested in the displayed contents, we need to reveal more details about the model. 

The Cartesian plane representing the display area is discrete. We consider points in the display 
area as grid points or picture elements (pixels), and we assume contents to be generated by 
assigning colors to the pixels. For the moment, the number of possible colors a pixel can attain is 
irrelevant. In the binary case of two colors we think of one color representing background and the 
other color representing foreground. 

The most elementary operation generating contents in a discrete plane is "set color of pixel" or 
"set pixel" for short. While a few drawing algorithms directly build on this atomic operation, block-
oriented functionality (traditionally called raster operations) plays a much more important role in 
practice. By a block we mean a rectangular area of pixels whose bounding lines are parallel to the 
axes of the coordinate system. 

Raster operations are based on a common principle: A block of width SW and height SH of source 
pixels is placed at a given point of destination (DX, DY) in the display area. In the simplest case, 
the destination block (DX, DY, SW, SH) is plainly overwritten by the source block. In general, the 
new value of a pixel in the destination block is a combination of its old value and the value of the 
corresponding source pixel: 

d := F(s, d) 

F is sometimes called the mode of combination of the raster operation. The raster is stored as an 
array of values of type SET, each set representing 32 black/white pixels. The modes of combining 
source and destination is implemented by the following set operations: 

mode operation 

replace s 
paint s + d  (or) 
invert s / d   (xor) 

Note that invert is equivalent with inverse video mode if s is TRUE for all pixels. 

There are many different variants of raster operations. Some refer to a source block in the display 
area, others specify a constant pattern to be taken as source block. Some variants require 
replication of the source block within a given destination block (DX, DY, DW, DH) rather than 
simple placement. 

The challenge when designing a raster interface is finding a unified, small and complete set of 
raster operations that covers all needs, in particular including the need of placing character 
glyphs. The amazingly compact resulting set of Oberon raster operations is exported by module 
Display: 

DEFINITION Display; 
  CONST  black = 0; white = 1; (*colors*) 
    replace = 0; paint = 1; invert = 2; (*operation modes*) 

  PROCEDURE Dot (col, x, y, mode: INTEGER); 
  PROCEDURE ReplConst (col, x, y, w, h, mode: INTEGER); 

  PROCEDURE CopyPattern (col, patadr, x, y, mode: INTEGER); 
  PROCEDURE CopyBlock (sx, sy, w, h, dx, dy, mode: INTEGER); 
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  PROCEDURE ReplPattern (col, patadr, x, y, w, h, mode: INTEGER); 
END Display. 

In the parameter lists of the above raster operations, mode is the mode of combination (replace, 
paint, or invert). CopyBlock copies the source block (sx, sy, w, h) to position (dx, dy) and uses 
mode to combine new contents in the destination block (dx, dy, w, h). It is assumed tacitly that the 
numbers of colors per pixel in the source block and in the destination area are identical. It is 
perhaps informative to know that CopyBlock is essentially equivalent with the famous BitBlt (bit 
block transfer) in the SmallTalk project [Goldberg]. In Oberon, CopyBlock is used primarily for 
scrolling contents within a viewer. 

The remaining raster operations use a constant pattern. Patterns are implemented as arrays of 
bytes, and the parameter patadr is the address of the relevant pattern. The first two bytes indicate 
width w and height h of the pattern. Pattern data are given as a sequence of bytes to be placed 
into the destination block from left to right and from bottom to top. Each line takes an integral 
number of bytes. Hence, the number of data bytes is ((w+7) DIV 8) * h. An example is shown in 
Figure 4.8. 

 
Figure 4.8  A pattern and its encoding as an array of bytes (in hex) 

Some standard patterns are included in module Display and exported as global variables. Among 
them are patterns arrow, hook, and star intended to represent the cursor, the caret, and the 
marker. A second group of predefined patterns supports drawing graphics. 

The parameter col in the pattern-oriented raster operations specifies the pattern's foreground 
color. Colors black (background) and white are predefined. Procedure CopyPattern copies the 
pattern to location x, y in the display area, using the given combination mode. It is probably the 
most frequently used operation of all because it is needed to write text. Procedure ReplPattern 
replicates the given pattern to the given destination block. It starts at bottom left and proceeds 
from left to right and from bottom to top. Procedures Dot and ReplConst are special cases of 
CopyPattern and ReplPattern respectively, taking a fixed implicit pattern consisting of a single 
foreground pixel. Dot is exactly our previously mentioned "set pixel". ReplConst is used to draw 
horizontal and vertical lines of various widths. 

The raster operations are a prominent example of the use of Oberon's data type SET. Formally, 
variables are sets of integers between 0 and 31. Here, they are taken as sets of bits numbered 
from 0 to 31. We consider the replication of 1's (mode = replace or paint) in the rectangle with 
origin x, y, width w, and height h. Every line consists of 1024 pixels, or 32 words. al, ar, a0, a1 are 
addresses. 

VAR al, ar, a0, a1: INTEGER; 
 left, right,  pixl, pixr: SET; 

al := base + y*128; 
ar := ((x+w-1) DIV 32)*4 + al; al := (x DIV 32)*4 + al; 
left := {(x MOD 32) .. 31}; right := {0 .. ((x+w-1) MOD 32)}; 
FOR a0 := al TO al + (h-1)*128 BY 128 DO 
 SYSTEM.GET(a0, pixl); SYSTEM.GET(ar, pixr); 
 SYSTEM.PUT(a0, pixl + left); 

07  07  3E  49  41  49  41  41  3E 
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 FOR a1 := a0+4 TO ar-4 BY 4 DO SYSTEM.PUT(a1, {0 .. 31}) END ; 
 SYSTEM.PUT(ar, pixr + right) 
END  

The definition (and even more so the implementation) of module Display provides support for a 
restricted class of possible hardware configurations only. Any number of display monitors is 
theoretically possible. However, they must be mapped to a regular horizontal array of predefined 
cells in the display area. Each cell is vertically split into two congruent regions, where the 
corresponding monitor is supposed to be able to select and display one of the two regions 
alternatively. Finally, it is assumed that all cells hosting black-and-white monitors are allocated to 
the left of all cells hosting color monitors. Figure 4.9 gives an impression of such a configuration. 

 
Figure 4.9  General, regular cell structure of display area 

Under these restrictions any concrete configuration can be parameterized by the variables of the 
definition above. Unit, Width, and Height specify the extent of a displayed region, where Width and 
Height are width and height in pixel units, and Unit is the size of a pixel in units of 1/36’000 mm. 
1/36’000 mm is a common divisor of all of the standard metric units used by the typesetting 
community, like mm, inch, Pica point and point size of usual printing devices. Bottom and UBottom 
specify the bottom y-coordinate of the primary region and the secondary region respectively. 
Finally, Left and ColLeft give the left x-coordinate of the area of black-and-white monitors and of 
color monitors respectively. 

4.6. Standard display configurations and toolbox 
Let us now take up again our earlier topic of configuring the display area. We have seen that no 
specific layout of the display area is distinguished by the general viewer management itself. 
However, some support of the familiar standard Oberon display look is provided by module 
Oberon. 

In the terminology of this module, a standard configuration consists of one or several horizontally 
adjacent displays, where a display is a pair consisting of two tracks of equal height, a user track 
on the left and a system track on the right. Note that even though no reference to any physical 
monitor is made, a display is typically associated with a monitor in reality. 

This is the relevant excerpt of the definition: 
DEFINITION Oberon; 
  PROCEDURE OpenDisplay (UW, SW, H: INTEGER); 
  PROCEDURE OpenTrack (X, W: INTEGER); 
  PROCEDURE DisplayWidth (X: INTEGER): INTEGER; 
  PROCEDURE DisplayHeight (X: INTEGER): INTEGER; 
  PROCEDURE UserTrack (X: INTEGER): INTEGER; 

third cell

black / white area color area

primary region 

secondary region 

first cell second cell 
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  PROCEDURE SystemTrack (X: INTEGER): INTEGER; 
  PROCEDURE AllocateUserViewer (DX: INTEGER; VAR X, Y: INTEGER); 
  PROCEDURE AllocateSystemViewer (DX: INTEGER; VAR X, Y: INTEGER); 
END Oberon. 

Procedure OpenDisplay initializes and opens a new display of the dimensions H (height), UW 
(width of user track), and SW (width of system track). Procedure OpenTrack overlays the 
sequence of existing tracks spanned by the segment [X, X + W) by a new track. Both procedure 
OpenDisplay and OpenTrack take from the client the burden of creating a filler viewer. 

The next group of procedures DisplayWidth, DisplayHeight, UserTrack and SystemTrack return 
width or height of the respective structural entity located at position X in the display area. 

Procedures AllocateUserViewer and AllocateSystemViewer make proposals for the allocation of a 
new viewer in the desired track of the display located at DX. In first priority, the location is 
determined by the system pointer that can be set manually. If the pointer is not set, a location is 
calculated on the basis of some heuristics whose strategies rely on different splitting fractions that 
are applied in the user track and in the system track respectively, with the aim of generating 
aesthetically satisfactory layouts. 

In addition to the programming interface provided by module Oberon for the case of standard 
display layouts, the display management section in the System toolbox provides a user interface: 

DEFINITION System;     (*Display management*) 
   PROCEDURE Open; (*viewer*) 
   PROCEDURE Close; (*viewer*) 
   PROCEDURE CloseTrack; 
   PROCEDURE Recall; (*most recently closed viewer*) 
   PROCEDURE Copy; (*viewer*) 
   PROCEDURE Grow; (*viewer*) 
   PROCEDURE Clear; (*clear system log*) 
END System. 

In turn, these commands are called to open a text viewer in the system track, close a viewer, 
close a track, recall (and reopen) the most recently closed viewer, copy a viewer, and grow a 
viewer. The commands Close, CloseTrack, Recall, Copy, and Grow are generic. Close, Copy, and 
Grow are typically included in the title bar of a menu viewer. Their detailed implementations follow 
subsequently. 
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5  The text system 
At the beginning of the computing era, text was the only medium mediating information between 
users and computers. Not only was a textual notation used to denote all kinds of data and objects 
via names and numbers (represented by sequences of characters and digits respectively), but 
also for the specification of programs (based on the notions of formal language and syntax) and 
tasks. Actually, not even the most modern and most sophisticated computing environments have 
been able to make falter the dominating role of text substantially. At most, they have introduced 
alternative models like graphical user interfaces (GUI) as a graphical replacement for command 
lines. 

There are many reasons for the popularity of text in general and in connection with computers in 
particular. To name but a few: Text containing any arbitrary amount of information can be built 
from a small alphabet of widely standardized elements (characters), their building pattern is 
extremely simple (lining up elements), and the resulting structure is most elementary (a 
sequence). And perhaps most importantly, syntactically structured text can be parsed and 
interpreted by a machine. 

In computing terminology, sequences of elements are called files and, in particular, sequences of 
characters are known as text files. Looking at their binary representation, we find text files 
excellently suited to be stored in computer memories and on external media. Remember that 
individual characters are usually encoded in one byte each (ASCII-code). We can therefore 
identify the binary structure of text files with sequences of bytes, matching perfectly the structure 
of any underlying computer storage. We should recall at this point that, with the possible exception 
of line-break control characters, rendering information is not part of ordinary text files. For 
example, the choices of character style and of paragraph formatting parameters are entirely left to 
the rendering interpreter. 

Unfortunately, in conventional computing environments, text is merely used for input/output, and 
its potential is not nearly exploited optimally. Input texts are typically read from the keyboard under 
control of some text editor, interpreted and then discarded. Output text is volatile. Once displayed 
on the screen it is no longer available to any other parts of the program. The root of the problem is 
easily located: Conventional operating systems neither feature an integrated management nor an 
abstract programming interface (API) for texts. 

Of course, such poor support of text on the level of programming must reflect itself on the user 
surface. More often than not, users are forced to retype a certain piece of text instead of simply 
copy/pasting it from elsewhere on the screen. Investigations have shown that, in average, up to 
80% of required input text is already displayed somewhere. 

Motivated by our positive experience with integrated text in the Cedar system [Teitelman] we 
decided to provide a central text management in Oberon at a sufficiently low system level. 
However, this is not enough. We actually need an abstract programming interface (API) for text 
that is, an abstract data type Text, together with a complete set of operations. We shall devote 
Section 5.1 to the explanation of this data type. In Section 5.2, we take a closer look at the basic 
text management in Oberon, including data structures and algorithms used for the implementation 
of type Text. 

Text frames are a special class of display frames. They appear typically (but not necessarily) as 
frames within a menu viewer (see Section 4.4.2). Their role is double-faced: a) Rendering text on 
the display screen and b) interpreting interactive editing commands. The details will be discussed 
in Section 5.3. 

With the aim of exploiting the power of modern bitmap-displays and also of reusing the results of 
earlier projects in the field of digital font design, we decided in favor of supporting “rich texts” in 
Oberon, including graphical attributes and in particular font specification. In Section 5.4 we shall 
explain the font machinery, starting from an abstract level and proceeding down to the level of 
raster data. 
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5.1. Text as an abstract data type 
The concept of abstraction is arguably the most important achievement of programming language 
development. It provides a powerful tool to create simplified views of complicated things and 
connections. Two prominent examples of program abstractions are definitions (interfaces) and 
abstract data types, embodying simplified views on a certain piece of program and on a certain kind 
of data respectively. 

We shall now give a precise definition of the notion of text in Oberon by presenting it as an abstract 
data type. It is important not to confuse this type with the far less powerful type String as it is often 
supported by advanced programming languages. In this Section we carefully avoid revealing any 
implementation aspects of the abstract type Text. Our viewpoint is that of an application program 
operating on text abstractly or using it as a medium of communication. 

Nevertheless, let us first use a symbolic looking glass to get a refined understanding of the concept 
of character in the context of rich texts. We know that each character represents a textual element 
of information. If displayed, it also refers to some specific graphical pattern, often called glyph. In 
Oberon, we do justice to both aspects by thinking of the ASCII-code as an index into a font that is 
into a set of glyphs of the same style. Representing characters as pairs (font, ref), where font 
designates a font and ref the character's ASCII-code and adding two more attributes color and 
vertical offset, we get to a quadruple representation (font, ref, col, voff) of characters. The 
components font, color, and vertical offset together are often referred to as looks. With that, we can 
now define a (rich) text as a sequence of characters with looks. We shall treat the topic of fonts and 
glyphs thoroughly in Section 5.4. 

For the moment, however, let us continue our discussion of the abstract data type Text. Formally, 
we define it as 

Text = POINTER TO TextDesc; 

TextDesc = RECORD 
    len: INTEGER; 
    notify: Notifier 
END; 

There is only one state variable and one method. The variable len represents the current length of 
the described text (i.e. the number of characters in the sequence). The procedure variable notify is 
included as a method (occasionally called after-method) to notify interested clients of state 
changes. 

By definition, each abstract data type comes with a complete set of operations. In the case of Text, 
three different groups corresponding to three different topics need to be considered, loading (from 
file), storing (to file), editing, and accessing (reading and writing) respectively. 

5.1.1. Loading and Storing Text 

Let us start with the file group. We first introduce a pair of mutually inverse operations called 
internalize and externalize. Their meaning is "load from file and build up an internal data structure" 
and "serialize the internal data structure and store it on file" respectively. There are three 
corresponding procedures: 

PROCEDURE Open (T: Text; name: ARRAY OF CHAR); 
PROCEDURE Load (T: Text; f: Files.File; pos: INTEGER; VAR len: INTEGER); 
PROCEDURE Store (T: Text; f: Files.File; pos: INTEGER; VAR len: INTEGER); 

Logical entities like texts are stored in Oberon on external media in the form of sections. A section 
is addressed by a pair (file, pos) consisting of a file descriptor and a starting position. In general, the 
structure of sections obeys the following syntax: 

section = identification type length contents. 
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Procedure Open internalizes a named text file (consisting of a single text section), procedure Load 
internalizes an arbitrary text section starting at (f, pos), and procedure Store externalizes a text 
section to (f, pos). The parameter T designates the internalized text. len returns the length of the 
section. Note that in case of Load the identification of the section must have been read and 
consumed before the loader is called. 

5.1.2. Editing Text 

Our next group of operations supports text editing. It comprises four procedures: 

PROCEDURE Delete (T: Text; beg, end: INTEGER); 
PROCEDURE Insert (T: Text; pos: INTEGER; B: Buffer); 
PROCEDURE Append (T: Text; B: Buffer); 

PROCEDURE ChangeLooks (T: Text; beg, end: INTEGER;  
    sel: SET; fnt: Fonts.Font; col, voff: INTEGER); 

Again, we should first explain the types of parameters. Procedures Delete and ChangeLooks each 
take a stretch of text as an argument which, by definition, is an interval [beg, end) within the given 
text. In the parameter lists of Insert and Append we recognize a new data type Buffer. 

Buffers are a facility to hold anonymous sequences of characters. Type Buffer presents itself again 
as an abstract data type: 

Buffer = POINTER TO BufDesc; 

BufDesc = RECORD len: INTEGER END; 

len specifies the current length of the buffered sequence. The following procedures represent the 
intrinsic operations on buffers: 

PROCEDURE OpenBuf (B: Buffer); 
PROCEDURE Copy (SB, DB: Buffer); 
PROCEDURE Save (T: Text; beg, end: INTEGER; B: Buffer); 

Their function is in turn opening a given buffer B, copying a buffer SB to DB, saving a stretch [beg, 
end) of text in a given buffer, and recalling the most recently deleted stretch of text and putting it 
into buffer B. 

Buffer is used as an auxiliary data type in editing procedures. Procedure Delete deletes the given 
stretch [beg, end) within text T, Insert inserts the buffer's contents at position pos within text T, and 
Append(T, B) is a shorthand form for Insert(T, T.len, B). Note that, as a side-effect of Insert and 
Append, the buffer involved is emptied. Finally, procedure ChangeLooks allows to change selected 
looks within the given stretch [beg, end) of text T. sel is a mask selecting a subset of the set of 
looks { font, color, vertical offset }. 

It is time now to come back to the notifier concept. Recapitulate that notify is an “after-method”. It 
must be installed by the client when opening the text and is called at the end of every editing 
operation. Its signature is 

Notifier = PROCEDURE (T: Text; op, beg, end: INTEGER); 

The parameters op, beg, and end report about the operation (op) that calls the notifier and on the 
affected stretch [beg, end) of the text. There are three different possible variants of op 
corresponding to the three different editing operations: op = delete, insert, replace correspond to 
procedures Delete, Insert (and Append), and ChangeLooks respectively.  

By far the most important application of the notifier is updating the display, i.e. adjusting all affected 
views of the text that are currently displayed to the new state of the text (the model). We shall come 
back to this important matter when discussing text frames in Section 5.3. 

In concluding this Section it is worth noting that the groups of operations just discussed have been 
designed to be equally useful for interactive text editors as for programmed text 
generators/manipulators.  
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5.1.3. Accessing Text 

Let us now turn to the third and last group of operations on texts: Accessing that is reading and 
writing. According to the principle of separation of concerns, one of our guiding principles, the 
access mechanism operates on extra aggregates called readers and writers rather than on texts 
themselves.  

Readers are used to read texts sequentially. Their type is declared as  
Reader = RECORD 
      eot: BOOLEAN; (*end of text*) 
      fnt: Fonts.Font; 
      col, voff: INTEGER 
END; 

A reader must first be opened at the desired position in the text before it can then be moved 
forward incrementally by reading character-by-character. Its state variables indicate end-of-text and 
expose the looks of the character last read. 

The corresponding operators are 
PROCEDURE OpenReader (VAR R: Reader; T: Text; pos: INTEGER); 
PROCEDURE Read (VAR R: Reader; VAR ch: CHAR); 

Procedure OpenReader sets up a reader R at position pos in text T. Procedure Read returns the 
character at the current position of R and makes R move to the next position. 

The current position of reader R is returned by a call to the function Pos: 
PROCEDURE Pos (VAR R: Reader): INTEGER; 

In Chapter 3 we learned that commands plus parameter lists are often embedded in ordinary texts. 
When interpreting such commands, the underlying text appears as a sequence of tokens like name, 
number, special symbol etc. much rather than as a sequence of characters. Therefore, we have 
adopted the well-known concepts of syntax and scanning from the discipline of compiler 
construction, including functional support. The Oberon scanner recognizes tokens of some 
universal classes. They are name, string, integer, real, longreal, and special character. 

The exact syntax of universal Oberon tokens is: 

token = name | string | integer | real | spexchar. 

name = ident { "." ident }.ident = letter { letter | digit }. 
string = """ { char } """. 
integer = ["+"|"-"] number. 
real = ["+"|"-"] number "." number ["E" ["+"|"-"] number]. 
number = digit { digit }. 
spexchar = any character except letters, digits, space, tab, and carriage-return. 

Type Scanner is defined correspondingly as 
Scanner = RECORD (Reader) 
      nextCh: CHAR; 
      line: INTEGER; 
      class: INTEGER; 
      i: INTEGER; 
      x: REAL; 
      c: CHAR; 
      len: INTEGER; 
      s: ARRAY 32 OF CHAR 
  END; 

This type is actually a variant record type with class as discriminating tag. Depending on its class 
the value of the current token is stored in one of the fields i, x, c, or s. len gives the length of s, 
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nextCh typically exposes the character terminating the current token, and line counts the number of 
lines scanned. 

The operations on scanners are  
PROCEDURE OpenScanner (VAR S: Scanner; T: Text; pos: INTEGER); 
PROCEDURE Scan (VAR S: Scanner); 

They correspond exactly to their counterparts OpenReader and Read respectively. 
 
Writers are dual to readers. They serve the purpose of creating and extending texts. However, 
again, they do not operate on texts directly. Rather, they act as self-contained aggregates, 
continuously consuming and buffering textual data. 

The formal declaration of type Writer resembles that of type Reader: 
Writer = RECORD 
      buf: Buffer; 
      fnt: Fonts.Font; 
      col, voff: INTEGER 
END; 

buf is an internal buffer containing the consumed data. fnt, col, and voff specify the current looks for 
the next character consumed by this writer. 

The following procedures constitute the Writer API: 
PROCEDURE OpenWriter (VAR W: Writer); 
PROCEDURE SetFont (VAR W: Writer; fnt: Fonts.Font); 
PROCEDURE SetColor (VAR W: Writer; col: INTEGER); 
PROCEDURE SetOffset (VAR W: Writer; voff: INTEGER); 

Procedure OpenWriter opens a new writer with an empty buffer. Procedures SetFont, SetColor, and 
SetOffset set the respective current look. For example, SetFont(W, fnt) is equivalent with W.fnt := 
fnt. These procedures are included because fnt, col, and voff are read-only for clients. 

The question may arise how data is produced and transferred to writers. The answer is a set of 
writer procedures, each of them handling an individual data type: 

PROCEDURE Write (VAR W: Writer; ch: CHAR); 
PROCEDURE WriteLn (VAR W: Writer); 
PROCEDURE WriteString (VAR W: Writer; s: ARRAY OF CHAR); 
PROCEDURE WriteInt (VAR W: Writer; x, n: INTEGER); 
PROCEDURE WriteHex (VAR W: Writer; x: INTEGER); 
PROCEDURE WriteReal (VAR W: Writer; x: REAL; n: INTEGER); 
PROCEDURE WriteRealFix (VAR W: Writer; x: REAL; n, k: INTEGER); 
PROCEDURE WriteClock(VAR W: Writer; d: INTEGER); 

The following is schematic fragment of a client program that creates textual output: 

open writer; set desired font; 
REPEAT 
     process; 
     write result to writer; 
     append writer buffer to output text 
UNTIL ended 

Of course, writers can be reused. For example, a single global writer is typically shared by all of the 
procedures within a module. In this case, the writer needs to be opened just once at module loading 
time. 

Typically, however, accessing aggregates are of a transient nature and are bound to a certain 
activity, which manifests itself in their allocation on the stack without any possibility of referencing 
them from the outside of the activity, in contrast to the underlying texts that are allocated on the 
system heap and have a much longer life time. 
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Let us summarize: Text in Oberon is a powerful abstract data type with intrinsic operations from 
three areas: Loading/storing, editing, and accessing (reading/writing). The latter two areas on their 
part introduce further abstract types called Buffer, Reader, Scanner, and Writer. In combination 
they guarantee a clean separation of very different concerns. The benefits of such a rigorous 
decoupling are numerous. For example, it makes it possible to freely choose (and vary) the 
granularity at which a text and its views are updated. Finally, an after-method is used to allow 
context-dependent post-processing of editing operations. It is used primarily for preserving 
consistency between text models and their views. 

5.2. Text Management 
The art and challenge of modularization lie in finding an effective decomposition of a topic into 
modules with relatively thin interfaces or, in other words, into modules with a great potential for 
information hiding. Text systems provide a welcome opportunity of an exercise. A closer analysis 
immediately leads to the following separate concerns corresponding to the components Model, 
View and Controller of the MVC scheme: Text management, text rendering, and text editing. If we 
combine View and Controller and add an auxiliary font handling module Fonts, we arrive at the 
following three-module import hierarchy: 

Module Object type Service  

TextFrames Frame Text rendering and editing 
Texts Text Text management 
Fonts Font Font management 

Note that, in contrast to the display-subsystem, the associated object types are not connected 
hierarchically here. 

Separate Sections 5.3 and 5.4 will be devoted to modules TextFrames and Fonts respectively. In 
the current Section we focus on module Texts. Regarding it as a model of the abstract data type 
Text presented in the previous Section, its definition is congruent with the specification of the 
abstract data type itself, and we need not repeat it here. 

The main topics of this Section are internal representation and file representation of texts. We first 
emphasize that the internal representation of a text is a completely private matter of module Texts 
that is encapsulated and hidden from clients. In particular, the representation could be changed at 
any time without invalidating any single client. In principle, the same is true for the file 
representation. However, stability is of paramount importance here because files serve the 
additional purposes of backing up text on external media and of porting text to other environments. 

Our choice of an internal representation of text was determined by a catalogue of requirements and 
desired properties. The wish list looks like this: 

   1.) lean data structure 
   2.) closed under editing operations 
   3.) efficient editing operations 
   4.) efficient sequential reading 
   5.) efficient direct positioning 
   6.) super efficient internalizing 
   7.) preserving file representations 

With the exception of 5.), we found these requirements met perfectly by an adequately generalized 
variant of the piece list technique that was originally used for Xerox PARC's Bravo text editor and 
also for ETH's former document editors Dyna and Lara [Gutknecht]. The original piece list is able to 
describe a vanilla text without looks. It is based on two principles: 

1.) A text is regarded as a sequence of pieces, where a piece is a section of a text file consisting of 
a sequence of contiguous characters. 

2.) Every piece is represented by a descriptor (f, pos, len), where the components designate a file, 
a starting position, and a length respectively. The whole text is represented as a list of piece 
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descriptors (in short: piece list). The editing operations operate on the piece list rather than on the 
pieces themselves. 

 

Figure 5.1 Piece chain representing a text 

Figure 5.1 shows a typical piece list representing (the current state of) a text. Investigating the 
effects of the basic editing operations delete and insert on the piece list, we end up with these 
algorithms: 

delete stretch [beg, end) of text = BEGIN 
      split pieces at beg and at end; 
      remove piece descriptors from beg to end from the chain 
END 

insert stretch of text at pos = BEGIN 
      split piece at pos; 
      insert piece descriptors representing the stretch at pos 
END 

Of course, splitting is superfluous if the desired splitting point happens to coincide with the 
beginning of a piece. Figures 5.3 and 5.4 show the resulting piece list after a delete and an insert-
operation respectively. 

piece 1 

hour day, intelligent life appeared 
within the last few seconds 

file f 
pos 765 
len 60 

piece 2 

file g 
pos 210
len 9

piece 3 

file h 
pos 312
len 64

piece 4 

file i 
pos 0 
len 1 

if the entire life of our planet were represented by one twe 

nty-four-

sentinel (0X) 

If the entire life of our planet were represented by one twenty-four-hour day, 
intelligent life appeared within the last few seconds 
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Figure 5.2  Piece chain after delete operation 

 

 
Figure 5.3  Piece chain after insert operation 

Checking our wish list of above we immediately recognize the requirements 1.), 2.), and 3.) as met. 
Requirement 4.) is also met under the assumption of an efficient mechanism for direct positioning in 
files. Requirement 6.) can be checked off because the piece list initially consists of a single piece 
spanning the entire text file. Finally, requirement 7.) is met simply because the operations do not 
affect file representations at all. 

In Oberon we adapted the piece list technique to texts with looks ("rich texts"). Formally, we first 
define a run as a stretch of text whose characters show identical looks. Now, we require the piece 
list to subordinate itself to the run structure. This obviously means that every piece needs to be 
contained within a single run. Figure 5.4 visualizes such a compliant piece list representing a text 
with varying looks. There are only two new aspects compared to the original version of the piece list 
discussed above: An additional operation to change looks and the initial state of the piece chain. 

change looks in a stretch [beg, end) of text = BEGIN 
      split pieces at beg and at end; 

piece 1 

file f 
pos 765 
len 32 

piece 2 

file i 
pos 155
len 40

piece 3 

file f 
pos 798
len 24

piece 0 

file i 
pos 0 
len 1 

if the entire life of our planet were represented by one 

, from its origin to the present moment 

internal file (0X)

If the entire life of our plane, from its origin to the present moment, were 
represented by one day, intelligent life appeared within the last few seconds 

piece 4 

file h 
pos 317
len 59

piece 1 

hour, intelligent life appeared within 
the last few seconds 

file f 
pos 765 
len 57 

piece 2 

file h 
pos 317
len 59

piece 0 

file i 
pos 0 
len 1 

if the entire life of our planet were represented by one 

internal file (0X) 

If the entire life of our planet were represented by one day, intelligent life 
appeared within the last few seconds 
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      change looks in piece descriptors from beg to end in the chain 
END 

This shows that requirements 2.) and 3.) in the wish list are still satisfied. 

 
Figure 5.4  Generalized piece chain representing a text with looks 

Initially, the pieces are identical with runs, and the number of elements in the piece list is equal to 
the number of runs. Because this number is typically small in comparison with the total number of 
characters in a text requirement 6.) is still met. 

We conclude that the new aspects do not invalidate the positive rating given above to the piece 
technique with regard to requirements 1.), 2.), 3.), 4.), 6.), and 7.) in our wish list. However, the 
requirement of efficient direct positioning remains. The problem is the necessity to scan through the 
piece list sequentially in order to locate the piece that contains the desired position. We investigated 
different solutions of this efficiency problem. They are based on different data structures connecting 
the piece descriptors, among them a piece tree and a variant of the piece list featuring an additional 
long-distance link like in a skip-list. 

Eventually, we decided in favor of a simpler solution that we can easily justify by pointing out that 
the typical editing scenario is zooming into a local region of text, i.e. positioning at an arbitrary 
location once and subsequently positioning at locations in its immediate neighborhood many times. 
Therefore, an appropriate solution is caching the most recently calculated values (pos, piece) of the 
translation map. Of course, this does not solve the problem of cache misses. Notice, however, that 
this problem is acute only in the case of extremely long piece lists that do not occur in ordinary texts 
and editing sessions. 

We shall now illustrate the piece technique in detail at the example of two important but basic 
operations: Insert and read. Let us start with an overview of the data types involved. Apart from 
some auxiliary private variables marked with an arrow, the types Text, Buffer, and Reader are 
already familiar to us from the previous Section. Type Piece is completely private and hidden from 
the clients.  

Text = POINTER TO TextDesc; 

Notifier = PROCEDURE (T: Text; op, beg, end: INTEGER); 

TextDesc = RECORD 
      len: INTEGER; 
      notify: Notifier; 
 → trailer: Piece; 
 → org: INTEGER; 
 → pce: Piece 
END; 

I have trained that man, says the laboratory rat, so that every time I press this lever 
he gives me food 

lever he gives me food 

so that every time I press this 

, says the laboratory rat, 

I have trained that man 

file h 
pos 317
len 59 
font 10i 

piece 1 

file f 
pos 100 
len 23 
font 10i 

piece 2 

file i 
pos 155
len 40 
font 10 

piece 3 

file f 
pos 798
len 24 
font 10i 

piece 0 

file i 
pos 0 
len 1 

piece 4 
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Buffer = POINTER TO BufDesc; 

BufDesc = RECORD 
      len: INTEGER; 
  → header, last: Piece 
END; 

Reader = RECORD 
      eot: BOOLEAN; 
      fnt: Fonts.Font; 
      col, voff: INTEGER; 
  → ref: Piece; 
  → org, off: INTEGER; 
      rider: Files.Rider 
 END; 

→ Piece = POINTER TO PieceDesc; 

→ PieceDesc = RECORD 
      f: Files.File; 
      off, len: INTEGER; 
      fnt: Fonts.Font; 
      col, voff: INTEGER; 
      prev, next: Piece 
 END; 

As depicted in Figure 5.1, the piece list is implemented as a doubly linked list with a sentinel piece 
closing it to a ring. The field trailer in type TextDesc points to the sentinel piece. Fields org and pce 
implement a translation cache consisting of merely one entry (org, pce). It links a position org with a 
piece pce. The fields header and last in type Buffer refer to the implementation of buffers as piece 
lists. They point to the first and last piece descriptors respectively. Finally, the fields ref, org, and off 
in type Reader memorize the current piece, its origin, and the current offset within this piece. 

The fields f, off, and len in type Piece specify the underlying file, starting position in the file, and 
length of the piece. fnt, col, and voff are its looks. Finally prev and next are pointers to the previous 
piece and to the next piece in the list respectively. 

FindPiece and SplitPiece are auxiliary procedures that are used by almost all piece-oriented 
operations. 

    PROCEDURE FindPiece (T: Text; pos: INTEGER; VAR org: INTEGER; VAR p: Piece); 
      VAR p: Piece; porg: INTEGER; 
    BEGIN p := T.pce; porg := T.org; 
1)    IF pos >= porg THEN 
          WHILE pos >= porg + p.len DO INC(porg, p.len); p := p.next END 
2)    ELSE p := p.prev; DEC(porg, p.len); 
          WHILE p < porg DO p := p.prev; DEC(porg, p.len) END 
       END; 
3)    T.pce := p; R.org := porg;  (*update cache*) 
       pce := p; org := porg 
    END FindPiece; 

Explanations (referring to the line numbers in the above code excerpt) 

1)  search to the right (next) 
2)  search to the left (prev) 
3)  update cache if more than 50 pieces traversed 

1)  PROCEDURE SplitPiece (p: Piece; off: INTEGER; VAR pr: Piece); 
     VAR q: Piece; 
   BEGIN 
2)   IF off > 0 THEN NEW(q); 
       q.fnt := p.fnt; q.col := p.col; q.voff := p.voff; 
       q.len := p.len - off; 
       q.f := p.f; q.off := p.off + off; 



 64

       p.len := off; 
3)     q.next := p.next; p.next := q; 
4)     q.prev := p; q.next.prev := q; 
        pr := q 
     ELSE pr := p 
     END 
   END SplitPiece; 

Explanations: 

1)  return right part piece pr after split 
2)  generate new piece only if remaining length > 0 
3)  insert new piece in forward chain 
4)  insert new piece in backward chain 

Procedure Insert handles text insertion. It operates on a buffer that contains the stretch of text to be 
inserted: 

   PROCEDURE Insert (T: Text; pos: INTEGER; B: Buffer); 
     VAR pl, pr, p, qb, qe: Piece; org, end: INTEGER; 
   BEGIN 
 1)   FindPiece(T, pos, org, p); SplitPiece(p, pos - org, pr); 
 2)   IF T.org >= org THEN 
        T.org := org - p.prev.len; T.pce := p.prev 
       END; 
       pl := pr.prev; qb := B.header.next; 
 3)    IF (qb # NIL) & (qb.f = pl.f) & (qb.off = pl.off + pl.len) 
            & (qb.fnt = pl.fnt) & (qb.col = pl.col) & (qb.voff = pl.voff) THEN 
         pl.len := pl.len + qb.len; qb := qb.next 
        END; 
        IF qb # NIL THEN qe := B.last; 
4)       qb.prev := pl; pl.next := qb; qe.next := pr; pr.prev := qe 
        END; 
5)     T.len := T.len + B.len; end := pos + B.len; 
6)     B.last := B.header; B.last.next := NIL; B.len := 0; 
7)     T.notify(T, insert, pos, end) 
    END Insert; 

Explanations: 

1)    split piece to isolate point of insertion 
2)    adjust cache if necessary 
3)    merge pieces if possible 
4)    insert buffer 
5)    update text length 
6)    empty buffer 
7)    notify 

Procedure Read implements sequential reading of characters in texts. It operates on a text reader: 
    PROCEDURE Read (VAR R: Reader; VAR ch: CHAR); 
    BEGIN 
 1)   Files.Read(R.rider, ch); R.fnt := R.ref.fnt; R.col := R.ref.col; R.voff := R.ref.voff; 
       INC(R.off); 
 2)   IF R.off = R.ref.len THEN 
 3)     IF R.ref.f = WFile THEN R.eot := TRUE END; 
         R.org := R.org + R.off; R.off := 0; 
 4)     R.ref := R.ref.next; R.org := R.org + R.off; R.off := 0; 
 5)     Files.Set(R.rider, R.ref.f, R.ref.off) 
       END 
    END Read; 

Explanations: 
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 1)    read character from file and update looks in reader 
 2)    if piece boundary reached 
 3)    check if sentinel piece reached 
 4)    move reader to next piece 
 5)    position file rider 

Procedure Read is typically used as a primitive by text scanners and in particular by the built-in 
scanner Scan for the recognition of universal tokens, as they were defined in the previous section. 
Scanning is a rather complex operation that, for example, includes the conversion of a sequence of 
digits into an internal floating-point representation and vice-versa. Scanning a real number involves 
recognizing m and d, and computing x = m*10d. This is done using procedure Ten(d) computing 10d 
by repeated multiplication maintaining the invariant  t * pn = 10n0, where n0 is the initial value of n. 

PROCEDURE Ten(n: INTEGER): REAL; 
   VAR t, p: REAL; 
BEGIN t := 1.0; p := 10.0; 
   WHILE n > 0 DO 
      IF ODD(n) THEN t := p * t END ; 
      p := p*p; n := n DIV 2 
    END ; 
   RETURN t 
END Ten; 

Writing a real number in decimal form is more complicated. It involves the computation of m and d 
from x = n*2e so that x = m*10d with 1.0 ≤ m < 10.0. First, e is obtained with the standard function 
UNPK(x, e), then d is computed (from the relationship 10k = 2k*log(10)) as d = e/log2(10). In order to 
avoid a real division for obtaining d, we use the approximation 1.0 / log2(10) = 77 DIV 256, and then 
compute x := x / Ten(e) or x := x * Ten(-e). Further details are to be taken from the listings of 
WriteReal and WriteRealFix. 

In spite of its apparent simplicity the piece list technique interoperates with other system 
components in quite a subtle way. For example, after a while of editing, there are typically 
numerous cross references between the documents involved. In other words, pieces of one 
document may point to foreign files that is to files that were originally associated with other 
documents. As a consequence, the file system must either employ some smart garbage collection 
algorithm or not recycle file pages at all, even if a new version of a file of the same name has been 
created in the meantime. 

A problem of another kind, again affecting the file system, arises if, say, a single text line is 
composed of several small pieces. Then, reading this line sequentially may necessitate several 
jumps to different positions in different files at a high pace. Depending on the quality of the file 
buffering mechanism, this may lead to significantly hesitant mouse tracking. 

And finally, typed characters that are supposed to be inserted into a text need to be stored on the 
so-called keyboard file. For this (continuously growing) file, several readers and one writer must be 
allowed to coexist concurrently. 

As a consequence, the following qualities of the underlying file system are mandatory for the piece 
technique to work properly: 

1. Once a file page is allocated it must not be reused (until system restart). 
2. A versatile file buffering mechanism supporting multiple buffers per file is required. 
3. Files must be allowed to be open in read mode and in write mode simultaneously. 

The format of text sections in files obeys a set of syntactical rules (productions) that can easily be 
specified in EBNF-notation: 

TextSection = ident header {char}. 
header = type offset run {run} null length. 
run = font [name] color offset length. 
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In the TextSection production ident is an identifier for text blocks. In the header production type is a 
type-discriminator, offset is the offset to the character part, run is a run-descriptor, null is a null-
character, and length is the length of the character sequence. In the run production font, color, and 
offset are specifications of looks, and length is the run-length. In order to save space, font names 
are coded as ordinal numbers within a text section. If and only if a font appears for the first time in a 
text block it is followed by the actual font name. 

Let us conclude this Section with two side-remarks and a summary. 

Remarks: 

For compatibility reasons, plain ASCII-files are accepted as text files as well. They are mapped 
to texts consisting of a single run with standard looks. 

Internalizing a text section from a file is extremely efficient because it is obviously sufficient to 
read the header and translate it into the initial state of the piece list. 

Summary: The mechanism used for the implementation of the abstract data type Text is completely 
hidden from clients. It is a generalized version of the original piece list technique, adapted to texts 
with looks. The piece list technique in turn is based on the principle of indirection: Operations 
operate on descriptors of texts rather than on texts themselves. The benefits are efficiency and 
non-destructive operations. However, the technique works properly only in combination with an 
efficient (and reliable) garbage collector and a suitable file system. 

5.3. Text Frames 
The tasks of text frames are text rendering and user interaction. A text frame represents a text view 
and a controller in the form of an interactive text editor. Technically, text frames are a subclass of 
display frames and, as such, are objects with an open message interface of the kind explained in 
Chapter 4. 

The geometric layout of text frames is determined by two areas: A rectangle of contents and a 
vertical scroll-bar along the left borderline. The type of text frames is a direct extension of type 
Display.Frame: 

 Frame = POINTER TO FrameDesc; 

 FrameDesc = RECORD (Display.FrameDesc) 
    text: Texts.Text; 
    org, col, lsp: INTEGER; 
    left, right, top, bot: INTEGER; 
    markH, time: INTEGER; 
    hasCar, hasSel, hasMark: BOOLEAN; 
    carloc: Location; 
    selbeg, selend: Location 
 END; 

Fields text and org specify the text part to be displayed, the former referring to the underlying text 
and the latter designating the starting position of the displayed part. Fields col and lsp are rendering 
parameters. They specify the frame's background color and the line spacing. Fields left, right, top, 
and bot are margins. They determine the rectangle of contents. mark indicates whether there is a 
position marker, which is a small horizontal bar indicating the position of the displayed part relative 
to the whole text. markH represents its location within the text frame. 

Caret and selection are two important features associated with a text frame. The caret indicates a 
focus, and it serves as an implicit "point of insertion" for placing consumed characters (for example 
from the keyboard). The selection is a stretch of displayed text. Additionally it serves as a 
parameter for various operations and commands, among them delete and change looks. The state 
and location of the caret is given by the variables car and carloc respectively. Analogously, the 
state of the selection and its begin and end are reflected by the fields sel, selbeg, and selend in the 
frame descriptor. Field time is a time stamp on the current selection. 
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In principle, caret and selection could be regarded as ingredients of the underlying text (the model) 
equally well. However, we deliberately decided to associate these features with frames (views) in 
order to get increased flexibility. For example, two different selections in adjacent viewers 
displaying the same text are normally interpreted as one extensive selection across their span. 

The auxiliary type Location summarizes information about a location in a text frame. Its definition is: 
 Location = RECORD 
    org, pos, dx, x, y: INTEGER 
 END; 

x, y specify the envisioned location relative to the text frame's origin, and dx is the width of the 
character at this location. pos is the corresponding position in the text and org is the origin position 
of the corresponding text line.  

The following is a simplified version of the message handler employed by text frames. It fully 
determines the behavior and capabilities of text frames. 

 PROCEDURE Handle* (F: Display.Frame; VAR M: Display.FrameMsg); 
  VAR F1: Frame; buf: Texts.Buffer; 
 BEGIN 
  CASE M OF 
  Oberon.InputMsg: 
1)   IF M.id = Oberon.track THEN Edit(F(Frame), M.X, M.Y, M.keys) 
   ELSIF M.id = Oberon.consume THEN 
2)    IF F(Frame).hasCar THEN Write(F(Frame), M.ch, M.fnt, M.col, M.voff) END 
   END | 
  Oberon.ControlMsg: 
3)   IF M.id = Oberon.defocus THEN Defocus(F(Frame)) 
4)   ELSIF M.id = Oberon.neutralize THEN Neutralize(F(Frame)) 
   END | 
5)  Oberon.SelectionMsg: 
   GetSelection(F(Frame), M.text, M.beg, M.end, M.time) | 
7)  Oberon.CopyMsg: Copy(F(Frame), F1); M.F := F1 | 
  MenuViewers.ModifyMsg: Modify(F(Frame), M.id, M.dY, M.Y, M.H) | 
8)  CopyOverMsg: CopyOver(F(Frame), M.text, M.beg, M.end) | 
9)  UpdateMsg: IF F(Frame).text = M.text THEN Update(F(Frame), M) END 
  END 
 END Handle; 

Explanations: 

 1)  Mouse tracking message: Call built-in editor immediately 
 2)  Consume message: In case of valid caret insert character 
 3)  Defocus message: Remove caret 
 4)  Neutralize message: Remove caret and selection 
 5)  Selection message: Return current selection with time stamp 
 6)  Copyover message: Copy given stretch of text to caret 
 7)  Copy message: Create a copy (clone) 
 8)  Modify message: Translate and change size 
 9)  Update message: If text was changed then update display 

We recognize again our categories of universal messages introduced in Chapter 4, Table 4.6: 
Messages in lines 1) and 2) report about user interactions. Messages in 3), 4), 5), 6), and 7) specify 
generic operations. Messages in 8) require a change of location or size. Messages of the latter kind 
arrive from the ancestor menu viewer via delegation. They are generated by the interaction handler 
and preprocessed by the original viewer message handler. Finally, messages in line 9) report about 
changes of contents. 

The text frame handler is encapsulated in a module called TextFrames. This module exports the 
above introduced types Frame (text frame) and Location, as well as the procedure Handle. 
Furthermore, it exports type UpdateMsg to report on changes made to a displayable text. 
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UpdateMsg = RECORD (Display.FrameMsg) 
      id: INTEGER; 
      text: Texts.Text; 
      beg, end: INTEGER 
 END; 

Field id names one of the operators replace, insert, or delete. The remaining fields text, beg, and 
end restrict the change to a range. Additional procedures generate a new standard menu text frame 
and contents text frame respectively: 

     PROCEDURE NewMenu (name, commands: ARRAY OF CHAR): Frame; 
     PROCEDURE NewText (text: Texts.Text; pos: INTEGER): Frame; 

This completes the minimum definition of module TextFrames. In addition, this module exports a 
set of useful service procedures supporting the composition of custom handlers from elements of 
the standard handler: 

  PROCEDURE Edit (F: Frame; X, Y: INTEGER; Keys: SET); 
  PROCEDURE Write (F: Frame; ch: CHAR; fnt: Fonts.Font; col, voff: INTEGER); 
  PROCEDURE Defocus (F: Frame); 
  PROCEDURE Neutralize (F: Frame); 
  PROCEDURE GetSelection (F: Frame; VAR text: Texts.Text; 
    VAR beg, end, time: INTEGER); 
  PROCEDURE CopyOver (F: Frame; text: Texts.Text; beg, end: INTEGER); 
  PROCEDURE Copy (F: Frame; VAR F1: Frame); 
  PROCEDURE Modify (F: Frame; id, dY, Y, H: INTEGER); 
  PROCEDURE Update (F: Frame; VAR M: UpdateMsg); 

The module also supports mouse tracking inside text frames: 
  PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER; VAR keysum: SET); 
  PROCEDURE TrackSelection (F: Frame; X, Y: INTEGER; VAR keysum: SET); 
  PROCEDURE TrackLine (F: Frame; X, Y: INTEGER; VAR org: INTEGER; VAR keysum: SET); 
  PROCEDURE TrackWord (F: Frame; X, Y: INTEGER; VAR pos: INTEGER; VAR keysum: SET); 

Let us now take a closer look at the implementation of some selected operations. For this purpose, 
we must first explain the notion of line descriptor that is used to optimize the operation of locating 
positions within text frames. 

Line = POINTER TO LineDesc; 

LineDesc = RECORD 
     len, wid: INTEGER; 
     eot: BOOLEAN; 
     next: Line 
END; 

Each line descriptor provides detailed information about a single line of text that is currently 
displayed:  len is the number of characters on the line, wid is the line width, eot indicates 
terminating line, and next points to the next line descriptor. 

Text frames maintain a private data structure called line list that describes the list of text lines 
displayed: 

 Frame = POINTER TO FrameDesc; 

 FrameDesc = RECORD (Display.FrameDesc) 
     text: Texts.Text; 
     org, col, lsp: INTEGER; 
     left, right, top, bot: INTEGER; 
     markH, time: INTEGER; 
     hasChar, hasSel, hasMark: BOOLEAN; 
     carloc, selbeg, selend: Location; 
  →  trailer: Line 
 END; 
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Field trailer represents a sentinel element that closes the line list to a ring. 

The line list contains useful summary information about the current contents of the text frame. It can 
be used beneficially by some related data types, for example by type Location that was introduced 
earlier: 

 Location = RECORD 
     org, pos, dx, x, y: INTEGER; 
 → lin: Line 
 END; 

The built-in editor procedure Edit is a worthwhile part to look at in more detail. It is called by the task 
scheduler to handle mouse events within a text frame. The following code excerpt shows nicely 
how the different components of the text system interoperate. 
 PROCEDURE Edit* (F: Frame; X, Y: INTEGER; Keys: SET); 
  VAR M: CopyOverMsg; 
   text: Texts.Text; 
   buf: Texts.Buffer; 
   v: Viewers.Viewer; 
   loc0, loc1: Location; 
   beg, end, time, pos: INTEGER; 
   keysum: SET; 
   fnt: Fonts.Font; 
   col, voff: INTEGER; 
 BEGIN 
  IF X < F.X + Min(F.left, barW) THEN  (*cursor is in scroll bar*) 
   Oberon.DrawMouse(ScrollMarker, X, Y); keysum := Keys; 
   IF Keys = {2} THEN   (*ML, scroll up*) 
    TrackLine(F, X, Y, pos, keysum); 
    IF (pos >= 0) & (keysum = {2}) THEN 
     RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H); 
     Show(F, pos) 
    END 
   ELSIF Keys = {1} THEN   (*MM*)  keysum := Keys; 
    REPEAT Input.Mouse(Keys, X, Y); keysum := keysum + Keys; 
     Oberon.DrawMouse(ScrollMarker, X, Y) 
    UNTIL Keys = {}; 
    IF ~(keysum = {0, 1, 2}) THEN 
     IF 0 IN keysum THEN pos := 0 
     ELSIF 2 IN keysum THEN pos := F.text.len - 100 
     ELSE pos := (F.Y + F.H - Y) * (F.text.len) DIV F.H 
     END ; 
     RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H); 
     Show(F, pos) 
    END 
   ELSIF Keys = {0} THEN   (*MR, scroll down*) 
    TrackLine(F, X, Y, pos, keysum); 
    IF keysum = {0} THEN 
     LocateLine(F, Y, loc0); LocateLine(F, F.Y, loc1); 
     pos := F.org - loc1.org + loc0.org; 
     IF pos < 0 THEN pos := 0 END ; 
     RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H); 
     Show(F, pos) 
    END 
   END 
  ELSE  (*cursor is in text area*) 
   Oberon.DrawMouseArrow(X, Y); 
   IF 0 IN Keys THEN  (*MR: select*) 
    TrackSelection(F, X, Y, keysum); 
    IF F.hasSel THEN 
     IF keysum = {0, 2} THEN (*MR, ML: delete text*) 
      Oberon.GetSelection(text, beg, end, time); 



 70

      Texts.Delete(text, beg, end, TBuf); 
      Oberon.PassFocus(Viewers.This(F.X, F.Y)); SetCaret(F, beg) 
     ELSIF keysum = {0, 1} THEN  (*MR, MM: copy to caret*) 
      Oberon.GetSelection(text, beg, end, time); 
      M.text := text; M.beg := beg; M.end := end; 
      Oberon.FocusViewer.handle(Oberon.FocusViewer, M) 
     END 
    END 
   ELSIF 1 IN Keys THEN  (*MM: call*) 
    TrackWord(F, X, Y, pos, keysum); 
    IF (pos >= 0) & ~(0 IN keysum) THEN Call(F, pos, 2 IN keysum) END 
   ELSIF 2 IN Keys THEN  (*ML: set caret*) 
    Oberon.PassFocus(Viewers.This(F.X, F.Y)); 
    TrackCaret(F, X, Y, keysum); 
    IF keysum = {2, 1} THEN (*ML, MM: copy from selection to caret*) 
     Oberon.GetSelection(text, beg, end, time); 
      IF time >= 0 THEN 
      NEW(TBuf); Texts.OpenBuf(TBuf); 
      Texts.Save(text, beg, end, TBuf); Texts.Insert(F.text, F.carloc.pos, TBuf); 
      SetSelection(F, F.carloc.pos, F.carloc.pos + (end  - beg)); 
      SetCaret(F, F.carloc.pos + (end - beg)) 
     ELSIF TBuf # NIL THEN 
      NEW(buf); Texts.OpenBuf(buf); 
      Texts.Copy(TBuf, buf); Texts.Insert(F.text, F.carloc.pos, buf); 
      SetCaret(F, F.carloc.pos + buf.len) 
     END 
    ELSIF keysum = {2, 0} THEN (*ML, MR: copy looks*) 
     Oberon.GetSelection(text, beg, end, time); 
     IF time >= 0 THEN 
      Texts.Attributes(F.text, F.carloc.pos, fnt, col, voff); 
      IF fnt # NIL THEN Texts.ChangeLooks(text, beg, end, {0,1,2}, fnt, col, voff) END 
     END 
    END 
   END 
  END 
 END Edit; 
 

We see that the editing operation is determined by the first key pressed (primary key) and can then 
be varied by “interclicking” that is, by clicking a secondary key while holding down the primary key. 
As a convention, (inter)clicking all keys means cancelling the operation. Mouse clicks and 
subsequent actions can now be summarized as follows: 

1. In the scroll bar 

primary key secondary key action 

ML - scroll designated line to the top 
MM - scroll proportional to mouse position 
MM ML scroll to the end of the text 
MM MR scroll to the beginning of the text 

2. In the text area 

primary key secondary key action 

ML - set caret 
ML MM copy selection to caret 
ML MT copy looks 
MM - call selected procedure 
MR - select 
MR ML delete selection 
MR MM copy selection to caret 
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In the text area the keys are interpreted according to their generic semantics: 

left key = point key 
middle key = execute key 
right key = select key 

Let us “zoom into” one of the editing operations, for example into TrackCaret. 
    PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER; VAR keysum: SET); 
      VAR loc: Location; keys: SET; 
    BEGIN 
 1)    IF F.trailer.next # F.trailer THEN 
 2)      LocateChar(F, X - F.X, Y - F.Y, F.carloc); 
 3)      FlipCaret(F); 
 4)      keysum := {}; 
          REPEAT 
            Input.Mouse(keys, X, Y); keysum := keysum + keys; 
            Oberon.DrawMouseArrow(X, Y); 
            LocateChar(F, X - F.X, Y - F.Y, loc); 
            IF loc.pos # F.carloc.pos THEN FlipCaret(F); F.carloc := loc; FlipCaret(F) END 
 5)      UNTIL keys = {}; 
 6)      F.hascar := TRUE 
      END 
    END TrackCaret; 

Explanations: 

 1) guard guarantees non-empty line list 
 2) locates the character pointed at 
 3) drags caret to new location 
 4) - 5) tracks mouse and drags caret accordingly 
 6) set caret state 

TrackCaret makes use of two auxiliary procedures FlipCaret and LocateChar. FlipCaret is used to 
turn off or on the pattern of the caret. LocateChar is an important operation that is used to locate 
the character at a given Cartesian position (x, y) within the frame. 

   PROCEDURE FlipCaret (F: Frame); 
   BEGIN 
1)    IF F.carloc.x < F.W THEN 
2)      IF (F.carloc.y >= 10) & (F.carloc.x + 12 < F.W) THEN 
3)        Display.CopyPattern(Display.white, Display.hook, 
              F.X + F.carloc.x, F.Y + F.carloc.y - 8, Display.invert) 
        END 
      END 
   END FlipCaret; 

Explanations: 

1) - 2) if there is room for drawing the caret 
3) copy standard hook-shaped pattern to caret location in inverse video mode 

    PROCEDURE LocateChar (F: Frame; x, y: INTEGER; VAR loc: Location); 
      VAR R: Texts.Reader; 
        patadr, pos, lim: INTEGER; 
        ox, dx, u, v, w, h: INTEGER; 
 1)  BEGIN LocateLine(F, y, loc); 
 2)    lim := loc.org + loc.lin.len - 1; 
 3)    pos := loc.org; ox := F.left; dx := eolW; 
 4)    Texts.OpenReader(R, F.text, loc.org); 
 5)    WHILE pos # lim DO 
 6)        Texts.Read(R, nextCh); 
 7)        Fonts.GetPat(R.fnt.raster, nextCh, dx, u, v, w, h, patadr); 
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            IF ox + dx <= x THEN 
              INC(pos); ox := ox + dx; 
              IF pos = lim THEN dx := eolW END 
            ELSE lim := pos 
            END 
          END ; 
  8)     loc.pos := pos; loc.dx := dx; loc.x := ox 
     END LocateChar; 

Explanations: 

 1) locate text line corresponding to at y 
 2) set limit to the last actual character on this line 
 3) start locating loop with first character on this line 
 4) setup reader and read first character of this line 
 5) - 7) scan through characters of this line until limit or x is reached 
    6) get character width dx of current character 
 8) return location found 

Note that the need to read characters from the text (again) in LocateChar has its roots in the so-
called proportional fonts in which our rich texts are represented. We found that keeping character 
widths is an unnecessary optimization thanks to the buffering capabilities of the underlying file 
system. In the case of fixed-pitch fonts a simple division by the character width would be sufficient, 
of course. 

Finally, procedure LocateLine uses the line list to locate the desired text line without reading text at 
all. 

    PROCEDURE LocateLine (F: Frame; y: INTEGER; VAR loc: Location); 
      VAR L: Line; org, cury: INTEGER; 
    BEGIN org := F.org; 
 1)    org := F.org; L := F.trailer.next; cury := F.H - F.top - asr;  
 2)    WHILE (L.next # F.trailer) & (cury > y + dsr) DO 
         org := org + L.len; L := L.next; cury := cury - lsp 
 3)    END; 
 4)    loc.org := org; loc.lin := L; loc.y := cury 
     END LocateLine; 

Explanations: 

 1) start with first line in the frame 
 2) -  3) traverse line chain until last line or y is reached 
 4) return found line 

After text editing text, rendering is our next topic. Let us pursue the case in that a user pressed the 
point-key and then interclicked the middle key, corresponding to line 56) in procedure Edit. 
Remember that notifier is called at the end of every editing operation and in particular at the end of 
Texts.Insert. In case of standard text frames, the notifier simply broadcasts an update message into 
the display space: 

   PROCEDURE NotifyDisplay (T: Texts.Text; op, beg, end: INTEGER); 
     VAR M: UpdateMsg; 
   BEGIN M.id := op; M.text := T; M.beg := beg; M.end := end; Viewers.Broadcast(M) 
   END NotifyDisplay; 

Let us now take the perspective of a text frame receiving an update message. Looking at line 9) in 
the text frame handler, we see that procedure Update is called, which in turn calls procedure Insert 
in TextFrames: 

     PROCEDURE Insert (F: Frame; beg, end: INTEGER); 
       VAR R: Texts.Reader; L, L0, l: Line; 
         org, len, curY, botY, Y0, Y1, Y2, dY, wid: INTEGER; 
     BEGIN 
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       IF beg < F.org THEN F.org := F.org + (end - beg) 
       ELSE 
 1)      org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;  
         WHILE (L # F.trailer) & (org + L.len <= beg) DO 
           org := org + L.len; L := L.next; curY := curY - lsp 
 2)      END; 
 3)      IF L # F.trailer THEN 
           botY := F.Y + F.bot + dsr; 
 4)        Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh); 
 5)        len := beg - org; wid := Width(R, len); 
 6)        ReplConst (F.col, F, F.X + F.left + wid, curY - dsr, L.wid - wid, lsp, 0); 
 7)        DisplayLine(F, L, R, F.X + F.left + wid, curY, len); 
 8)        org := org + L.len; curY := curY - lsp; 
            Y0 := curY; L0 := L.next; 
            WHILE (org <= end) & (curY >= botY) DO 
              NEW(l); 
              Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0); 
              DisplayLine(F, l, R, F.X + F.left, curY, 0); 
              L.next := l; L := l; 
              org := org + L.len; curY := curY - lsp 
 9)        END; 
10)        IF L0 # L.next THEN Y1 := curY; 
11)          L.next := L0; 
             WHILE (L.next # F.trailer) & (curY >= botY) DO 
               L := L.next; curY := curY - lsp 
12)         END; 
              L.next := F.trailer; 
              dY := Y0 - Y1; 
              IF Y1 > curY + dY THEN 
13)            Display.CopyBlock 
                  (F.X + F.left, curY + dY + lsp - dsr, F.W - F.left, Y1 - curY - dY, 
                   F.X + F.left, curY + lsp - dsr, 
                   0); 
                Y2 := Y1 - dY 
              ELSE Y2 := curY 
              END; 
14)          curY := Y1; L := L0; 
              WHILE curY # Y2 DO 
                Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0); 
                DisplayLine(F, L, R, F.X + F.left, curY, 0); 
                L := L.next; curY := curY - lsp 
15)          END 
            END 
          END  
        END; 
16)    UpdateMark(F) 
      END Insert; 

Some explanations: 

 1) - 2) search line where inserted part starts 
 3) if it is displayed in this viewer 
 4) setup reader on this line 
 5) get width of unaffected part of line (avoid touching it) 
 6) clear remaining part of line 
 7) display new remaining part of line 
 8) - 9) display newly inserted text lines 
10) if it was not a one line update 
11) - 12) skip overwritten text lines 
13) use fast block move to adjust reusable lines 
14) - 15) redisplay previously overwritten text lines 
16) adjust position marker 
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Special care needs to be exercised in the implementation to avoid "flickering" and to minimize 
processing time. Concretely, the following measures are taken for this purpose: 

1.) Avoid writing the same data again. 
2.) Keep the number of newly rendered text lines at a minimum. 
3.) Use raster operations (block moves) to adjust reusable displayed lines. 

Of course, the rules governing the rendering and formatting process crucially influence the 
complexity of procedures like Insert. For text frames we have consciously chosen the simplest 
possible set of formatting rules. They can be summarized as: 

1.) For a given text frame the distance between lines is constant. 
2.) There are no implicit line breaks. 

It is exactly this set of rules that makes it possible to display a text line in one pass. Two passes are 
inevitable if line distances have to adjust to font sizes or if lines must be broken implicitly. 

Updating algorithms make use of the following one-pass rendering procedures Width and 
DisplayLine: 

    PROCEDURE Width (VAR R: Texts.Reader; len: INTEGER): INTEGER; 
      VAR patadr, pos, ox, dx, x, y, w, h: INTEGER; 
 1)  BEGIN pos := 0; ox := 0; 
       WHILE pos < len DO 
          Fonts.GetPat(R.fnt, nextCh, dx, x, y, w, h, pat); 
          ox := ox + dx; INC(pos); Texts.Read(R, nextCh) 
 2)   END; 
 3)   RETURN ox 
   END Width; 

Explanations: 

 1) - 2) scan through len characters of this line 
 3) return accumulated width 

Procedures Width and LocateChar are similar. Therefore the above comment about relying on the 
buffering capabilities of the underlying file system applies to procedure Width equally well. 

    PROCEDURE DisplayLine (F: Frame; L: Line; 
      VAR R: Texts.Reader; X, Y, len : INTEGER); 
      VAR patadr; NX, Xlim, dx, x, y, w, h: INTEGER; 
 1)  BEGIN NX := F.X + F.W; Xlim := NX - 40; 
 2)    WHILE (nextCh # CR) & ((nextCh > " ") OR (X < Xlim)) & (R.fnt # NIL) DO 
 3)      Fonts.GetPat(R.fnt, nextCh, dx, x, y, w, h, patadr); 
 4)      IF (X + x + w <= NX) & (h # 0) THEN 
 5)        Display.CopyPattern(R.col, patadr, X + x, Y + y, Display.invert) 
 6)      END; 
 7)      X := X + dx; INC(len); Texts.Read(R, nextCh) 
 8)    END; 
 9)    L.len := len + 1; L.wid := X + eolW - (F.X + F.left); 
10)    L.eot := R.fnt = NIL; Texts.Read(R, nextCh) 
    END DisplayLine; 

Explanations: 

 1) set right margin 
 2) - 8) display characters of this line 
    3) get width dx, box x, y, w, h, and pattern address of next character 
    4) if there is enough space in the rectangle of contents 
    5) display pattern 
    7) jump to location of next character; read next character 
 9) - 10) setup line descriptor 
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Procedure DisplayLine is again similar to LocateChar, and the comment about relying on the file 
system’s buffering capabilities applies once more. The principal difference between LocateChar 
and Width on one hand and DisplayLine on the other hand is the fact that the latter accesses the 
display screen physically. Therefore, possession of the screen lock is a tacit precondition for calling 
DisplayLine. 

A quick look at an auxiliary procedure that updates the position marker concludes our tour behind 
the scenes of the text system:  

    PROCEDURE UpdateMark (F: Frame); 
      VAR oldH: INTEGER; 
    BEGIN 
 1)    oldH := F.markH; F.markH := F.org * F.H DIV (F.text.len + 1)); 
        IF (F.mark > 0) & (F.left >= barW) & (F.markH # oldH) THEN 
 2)      Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - oldH, markW, 1, Display.invert); 
 3)      Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - F.markH, markW, 1, Display.invert) 
        END 
     END UpdateMark; 

Explanations 

 1) shows how the marker's position is calculated. Loosely spoken, the invariant is 
distance from top of frame / frame height  =  text position of first character in frame / text length 

 2) erase the old marker 
 3) draw the new marker 

And this in turn concludes our Section on text frames. Recapitulating the most important points: The 
tasks of text editing (input oriented) and text rendering (output oriented) are combined in the 
concept of text frames. Text frames constitute a subclass of display frames, and they are 
implemented in a separate module called TextFrames. The implementation of TextFrames 
accesses the displayed text exclusively via the “official” abstract interface of module Texts 
discussed in Section 5.2. It maintains a private data structure of line lists to accelerate locating 
requests. Text frames use simple formatting rules that allow super-efficient rendering of text in a 
single pass. In particular, line spacing is fixed for every text frame. Therefore, different styles of a 
base font are possible within a given text frame while different sizes are not. 

Putting into relation the different extensions of type Display.Frame that we came across in Chapters 
4 and 5, we obtain the type hierarchy as shown in Figure 5.5. 

 
Figure 5.5  Extensions of tye Display.Frame 

5.4. The Font Machinery 
We saw in the previous Sections that Oberon texts support attribute specifications (“looks”) for 
characters. Three different attributes are supported: font, color, and vertical offset. Let us first focus 
on the font attribute. A font can be regarded as a style the standard character set is designed in. 
Typically, an entire text is typeset in a single style, that is, there is one font per text. However, 
sometimes, an author wants to emphasize titles or words by changing the size of the font or by 
varying it to bold face or italics. In special texts, special characters like mathematical symbols or 

Viewers.Track MenuViewers.Viewer 

Viewers.Viewer TextFrames.Frame 

Display.Frame 



 76

other kinds of icons may occur. In even more complex documents, mathematical or chemical 
formulae might flow within the text. 

This generalized view leads us to a different interpretation of the notion of font. We can regard a 
font as an indexed library of (graphical) objects, mostly but not necessarily glyphs. In the case of 
ordinary characters it is natural to use the ASCII-code as an index, ending up with an interpretation 
of text as sequence of pairs (library, index). Note that this is a very general view indeed that, in 
principle, is equivalent with defining text as sequence of arbitrary objects. 

The imaging model of characters provides two levels of abstraction. On the first level, characters 
are black boxes specified by a set of metric data x, y, w, h, and dx. (x, y) is a vector from the current 
point of reference on the base line to the origin of the box. w and h are width and height of the box, 
and dx is the distance to the point of reference of the next character on the same base line. On the 
second level of abstraction, a character is defined by a digital pattern or glyph that is to be rendered 
into the box. Figure 5.6 visualizes this model of characters. 

The additional two character attributes color and vertical offset appear now as parameters for the 
character model. The vertical offset allows translating the glyph vertically and the color attribute 
specifies the foreground color of the pattern. 

Figure 5.6  The geometric character model 

Good examples of procedures operating on the first level of abstraction are procedures LocateChar 
and Width that we discussed in the previous Section, as well as text formatters for a remote printer. 
In contrast, procedure DisplayLine operates on the second level. 

The representation of characters as digital patterns is merely the last step in a complex font design 
and rendering process. At the beginning is a generic description of the shape of each character in 
the form of outlines and hints. Outlines are typically composed of straight lines and spline-curves. 
Hints are included to assist the digitizer in its effort to faithfully map the filled character outlines into 
the device raster. For example, hinting can guarantee consistency of serif shapes and stem widths 
across an entire font within a text, independent of the relative positions of the characters with 
respect to the grid lines. Automatic digitization produces digital patterns of sufficiently high quality 
for printing media resolutions. For screen resolutions, however, we prefer to add a hand-tuning 
step. This is the reason why digital patterns are not produced "on the fly" in Oberon. 

Oberon's font management is encapsulated in module Fonts, with a low-level extension into the 
module Display that we already know from Chapter 4. The interface to module Fonts is very simple 
and narrow: 

MODULE Fonts; 

     TYPE Font = POINTER TO FontDesc; 
          FontDesc = RECORD 
            name: ARRAY 32 OF CHAR;; 
            height, minX, maxX, minY, maxY: INTEGER; 

x, y 

w 

h voff 

dx 
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            next: Font 
          END; 

      VAR Default: Font; 

      PROCEDURE GetPat(fnt: Font; ch: CHAR; VAR dx, x, y, w, h, patadr: INTEGER); 
      PROCEDURE This (name: ARRAY OF CHAR): Font; 
      PROCEDURE Free; 
END Fonts. 

Variable name in type Font is the name of the underlying file. The variables height, minX, maxX, 
minY, and maxY designate line height and summary metric data. Default is a system-wide default 
font. It is installed at system loading time. GetPat delivers the geometric data for a given character 
in a given font (see Figure 5.5). This is a procedure to internalize (load) a font from a file given by 
its name. Free releases from storage fonts that are no longer needed. 

Type Font should again be regarded as an abstract data type with two intrinsic operations This and 
GetPat Thinking of the immutable nature of fonts, multiple internal copies of the same font are 
certainly undesirable. Therefore, internalized fonts are cached in a private list that manifests itself in 
a private field next in type FontDesc. The cache is maintained by the internalizing procedure This 
according to the following scheme: 

   search font in cache; 
   IF found THEN return cached internalization 
     ELSE internalize font; cache it 
   END 

The implementation of type Font did not raise many challenges. One, however, is an undesirable 
side-effect of caching. The problem arises if a font is used for a limited time only. Because it is 
referenced by the cache it will never be collected by the system's garbage collector. Two possible 
solutions offer themselves: a) provide an explicit freeing operation and b) enforce some special 
handling by the garbage collector based on a concept of "weak" pointers. 

We conclude this Section with a formal specification of the font file format. Note that on the one 
hand, the file format is completely private to the managing Fonts module and on the other hand, it 
should be ultimately stable because it is probably used for long-term backup and for wide-range 
data exchange across multi-system platforms. 

This is an EBNF specification of the Oberon font file format: 

   FontFile = ident header contents. 
   header = abstraction family variant height minX maxX minY maxY. 
   contents = nofRuns { beg end } { dx x y w h } { rasterByte }. 

ident, abstraction, family, and variant are one-byte values indicating file identification, abstraction 
(first level without raster bytes, second level with raster bytes), font family (Times Roman, Oberon, 
etc.), and variant (bold face, italics etc.). The values height, minX, maxX, minY and maxY are two 
bytes long each. They define in turn line height, minimum x-coordinate (of a box), maximum x-
coordinate, minimum y-coordinate, and maximum y-coordinate. All values in production contents 
are two bytes long. nofRuns specifies the number of runs within the ASCII-code range (intervals 
occupied without gaps) and every pair [beg, end) describes one run. The tuples (dx, x, y, w, h) are 
the metric data of the corresponding characters (in their ASCII-code order), and the sequence of 
rasterByte gives the total of raster information. 

In summary, fonts in Oberon are indexed libraries of objects. The objects are descriptions of 
character images in two levels of abstraction: As metric data of black boxes and as binary patterns 
(glyphs). Type Font is an abstract data type with intrinsic operations to internalize and to get 
character object data. Internalized fonts are cached in a private list. 

5.5. The Edit toolbox 
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We have seen that every text frame integrates an interactive text editor that we can regard as an 
interpreter of a set of built-in commands (intrinsic commands). Of course, we would like to be able 
to extend this set by custom editing commands (extrinsic commands). Adding additional editing 
commands was indeed a worthwhile stress test for the underlying texts API. Module Edit is the 
result of this effort. It is a toolbox of consisting of some standard extrinsic editing commands. 

DEFINITION Edit; 
    PROCEDURE Open; (*text viewer*) 
    PROCEDURE Show; (*text*) 
    PROCEDURE Locate; (*position*) 
    PROCEDURE Search; (*pattern*) 
    PROCEDURE Store; (*text*) 
 
    PROCEDURE Recall; (*deleted text*) 
    PROCEDURE CopyFont; 
    PROCEDURE ChangeFont; 
    PROCEDURE ChangeColor; 
    PROCEDURE ChangeOffset; 
END Edit. 

The first group of commands in Edit is used to display, locate, and store texts or parts of texts. In 
turn they open a text file and display it, open a program text and show the declaration of a given 
object, locate a given position in a displayed text (main application: locating an error found by the 
compiler), search a pattern, and store the current state of a displayed text. Commands in the next 
group are related with editing. They allow restoring of the previously deleted part of text, copying a 
font attribute to the current text selection, and change attributes of the current text selection. Note 
that the commands CopyFont, ChangeFont, ChangeColor, and ChangeOffset are extrinsic 
variations of the intrinsic copy-look operation. The implementations of the toolbox commands are 
given in the Appendix. 
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6  The module loader 

6.1.  Linking and loading 
When the execution of a command M.P is requested, module M containing procedure P must be 
loaded, unless it is already loaded because a command from the same module had been executed 
earlier or if the module had been imported by another module before. Modules are available in the 
form of so-called object files, generated by the compiler. The term loading refers to the transfer of the 
module code from the file into main memory, from where the processor fetches individual instructions. 
This transfer involves also a certain amount of transformation as required by the object file format on 
the one hand and the storage layout on the other. A system typically consists of many modules, and 
hence loading modules also involves linking them together, in particular linking them with already 
loaded modules. Before loading, references to another module's objects are relative to the base 
address of this module; the linking or binding process converts them into absolute addresses. 

The linking process may require a significant amount of address computations. But they are simple 
enough and, if the data are organized in an appropriate way, can be executed very swiftly. 
Nevertheless, and surprisingly, in many operating systems linking needs more time than compilation. 
The remedy which system designers offer is a separation of linking from loading. A set of compiled 
modules is first linked; the result is a linked object file with absolute addresses. The loader then 
merely transfers the object file into main store. 

We consider this an unfortunate solution. Instead of trying to cure an inadequacy with the aid of an 
additional processing stage and an additional tool, it is wiser to cure the malady at its core, namely to 
speed up the linking process itself. Indeed, there is no separate linker in the Oberon system. The 
linker and loader are integrated and fast enough to avoid any desire for pre-linking. Furthermore, the 
extensibility of a system crucially depends on the possibility to link additional modules to the ones 
already loaded by calls from any module. This is called dynamic loading. This is not possible with pre-
linked object files. Newly loaded modules simply refer to the loaded ones, whereas pre-linked files 
lead to the presence of multiple copies of the same module code. 

Evidently, the essence of linking is the conversion of relative addresses as generated by the compiler 
for all external references into absolute addresses as required during program execution.  Before 
proceeding, we must consider an additional complication. Assume that a module M1 is to be 
compiled which is a client of (that is, it imports) module M0. The interface of M1 - in the form of a 
symbol file - does not specify the entry addresses of its exported procedures, but merely specifies a 
unique number (pno) for each one of them. The reason for this is that in this way the implementation 
of M0 may be modified, causing a change of entry addresses, without affecting its interface 
specification. And this is a crucial property of the scheme of separate compilation of modules: 
changes of the implementation of M0 must not necessitate the recompilation of clients (M1). The 
consequence is that the binding of entry addresses to procedure numbers must be performed by the 
linker. In order to make this possible, the object file must contain a list (table) of its entry addresses, 
one for each procedure number used as index to the table. 

Similarly, the object file must contain a table of imported modules, containing their names. An 
external reference in the program code then appears in the form of a pair consisting of a module 
number (mno) - used as index to the import table (of modules) - and a procedure number (pno), used 
as index to the entry table of this module. 

Certain linkage information must not only be provided in each object file, but also be present along 
with each loaded module's program code, because a module to be loaded must be linkable with 
modules loaded at any earlier time without reading their object files again. 

6.2. Module representation 
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The primary requirement is that a system must be represented in a form that allows to add new 
modules quickly. What is a sensible representation for this purpose? The simplest solution that 
comes to mind is a list of module blocks containing sections for the global data, for the program code, 
and perhaps meta data for the linking process. The list is rooted in a variable global to the loader 
module, here called Modules. 

 
Fig. 6.1. System of 4 modules 

The first part, containing the link to the next module, is called the module descriptor. On the Oberon 
System, it contains further links to the various sections of a module. The type Module is defined as 
follows: 

TYPE Module = POINTER TO ModDesc; 
 ModuleName = ARRAY 32 OF CHAR; 
 ModDesc = RECORD 
   name: ModuleName; 
   next: Module; 
   key, num, size, refcnt: INTEGER; 
   data, code, imp, cmd, ent, ptr: INTEGER  (*addresses*) 
 END ; 

key is the module's key used for version consistency checking. The key changes if, and only if, the 
module's interface and thereby its symbol file changes. num is the module's number, which is the 
index of the module's entry in a global module table, referenced by the processor's MT register. The 
invariant relationship is 

ModTable[mod.mno] = mod.data 

for all mod in the module list. size is the entire module block's size excluding the descriptor, and refcnt 
is the number of other modules importing this module. This number is used to check whether a 
module can be released by procedure Modules.Free. 
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Figure 6.2. Module block headed by descriptor 

The section with meta data follows the data and code areas and consists of several parts. Imports is 
an array of the modules imported by this module, each entry being the address of the respective 
module descriptor. Commands is a sequence of procedure identifiers followed by their offset in the 
code section. This section is used when activating a command. Entries is an array of offsets of all 
exported entities (including commands). This section is used by the loader itself for linking. Pointer 
refs is an array of offsets of global pointer variables in the data section. These are used  by the 
garbage collector as the roots of graphs of heap objects in use. 

6.3. The linking loader 
The purpose of the loader is to read object files, and to transform the file representation of modules 
into their internal image. 

The loader is represented by procedure Load in module Modules. It accepts a name and returns a 
pointer to the specified module's descriptor. It first scans the list searching for the named module. 
Only if it is not present, the module is loaded and added to the list. Duplications therefore cannot 
occur. 

mod := root; 
WHILE (mod # NIL) & (name # mod.name) DO mod := mod.next END ; 
IF mod = NIL THEN (*load*) F := ThisFile(name); Files.Set(R, F, 0);  ... 

First, the header of the respective object file is read. It specifies the required size of the block which is 
allocated in the module area at the position indicated by the global variable AllocPtr. Then the list of 
imports of the module being imported is read, and these module are imported. Evidently procedure 
Load is used recursively. Because cyclic imports are excluded, recursion always terminates.  

Files.ReadString(R, impname);   (*imports*) 
WHILE (impname[0] # 0X) & (res = 0) DO 
 Files.ReadInt(R, impkey); 
 Load(impname, impmod); import[nofimps] := impmod; importing := name1; 
 IF res = 0 THEN 
  IF impmod.key = impkey THEN INC(impmod.refcnt); INC(nofimps) 
  ELSE error(3, name); imported := impname 
  END 
 END ; 
 Files.ReadString(R, impname) 
END 

The loading process stops, if a key mismatch is detected (err = 3). After successful loading of all 
imports, the loading of the actual module proceeds by allocating a descriptor and then reading the 
remaining sections of the file. The data is allocated (and cleared) and the code section is read in a 
straight-forward way without alteration. 

At the very end of the file three integers called fixorgP, fixorgD, and fixorgT are read. They are the 
anchors of linked lists in the program code of instructions that need fixups. These fixups are 
performed only after the entire file had been read. Traversing the P-list, the pairs mno-pno are 
replaced by computed offsets in BL instructions (procedure calls). Traversing the D-list, addresses of 
LDR instructions and instruction pairs are fixed up, and traversing the T-list, addresses of type 
descriptors are computed and inserted. This low-level piece of code is shown below for call 
instructions (BL). Those for the D-List and the T-list are analogous. 

adr := mod.code +  fixorgP*4; 
WHILE adr # mod.code DO 
 SYSTEM.GET(adr, inst); 
 mno := inst DIV 100000H MOD 10H; (*decompose*) 
 pno := inst DIV 1000H MOD 100H; 
 disp := inst MOD 1000H; 
 SYSTEM.GET(mod.imp + (mno-1)*4, impmod); 
 SYSTEM.GET(impmod.ent + pno*4, dest); dest := dest + impmod.code; 
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 offset := (dest - adr - 4) DIV 4; 
 SYSTEM.PUT(adr, (offset MOD 1000000H) + 0F7000000H); (*compose*) 
 adr := adr - disp*4  
END ; 

After the module has been loaded successfully, its initialisation body is executed. 

Apart from Load, module Modules also contains the procedures 
PROCEDURE ThisCommand (mod: Module; name: ARRAY OF CHAR): Command; 
PROCEDURE Free (name: ARRAY OF CHAR); 

The former yields the procedure named name from module mod. It is used in TextFrames.Call for 
activating command procedures. The latter unloads the named module, i.e. removes it from the list of 
loaded modules. 

The frequent use of the low-level procedures SYSTEM.GET and SYSTEM.PUT is easily justified in 
base modules such as the loader or device drivers. After all, here data are transferred into untyped 
main storage. 

6.4. The toolbox of the loader 
User commands directed to the loader are contained in module System. The toolbox offers the 
following three commands: 

System.ShowModules 
System.ShowCommands modname 
System.Free {modname} ~ 

The first command opens a viewer and provides a list of all loaded modules. The list indicates the 
block length and the number of clients importing a module (the reference count). ShowCommands 
opens a viewer and lists the commands provided by the specified module. The commands are 
prefixed by the module name, and hence can immediately be activated by a mouse click. Free is 
called in order to remove modules either to regain storage space or to replace a module by a newly 
compiled version. A module can be dispensed only if (1) it has no clients, and (2) if does not declare 
any record types which are extensions of imported types. 

6.5. The Oberon object file format 
The name extension of object files is .rsc. Their syntax is the following: 

CodeFile  =  name key version size  
    imports typedesc varsize strings code commands entries ptrrefs fixP fixD fixT body "O". 
imports  =  {modname key} 0X. 
typedesc  =  nof {byte}. 
strings  =  nof {char}. 
code  =  nof {word}. 
commands  =  {comname offset} 0X. 
entries  =  nof {word}. 
ptrrefs  =  {word} 0. 

fixP, fixD, fixT are the origins of chains of instructions to be updated (fixed up). body is the entry point 
offset of the module body. 
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7  The file system 

7.1. Files 
It is essential that a computer system has a facility for storing data over longer periods of time 
and for retrieving the stored data. Such a facility is called a file system. Evidently, a file system 
cannot accommodate all possible data types and structures that will be programmed in the future. 
Hence, it is necessary to provide a simple, yet flexible enough base structure that allows any data 
structure to be mapped onto this base structure (and vice-versa) in a reasonably straight-forward 
and efficient way. This base structure, called file, is a sequence of bytes. As a consequence, any 
given structure to be transformed into a file must be sequentialized. The notion of sequence is 
indeed fundamental, and it requires no further explanation and theory. We recall that texts are 
sequences of characters, and that characters are typically represented as bytes. 

The sequence is also the natural abstraction of all physically moving storage media. Among them 
are magnetic tapes and disks. Magnetic media have the welcome property of non-volatility and 
are therefore the primary choices for storing data over longer periods of time, especially over 
periods where the equipment is switched off. Sequential access is also necessary for media that 
allow access only by large blocks, such as flash-RAMs and SD-cards. 

A further advantage of the sequence is that its transmission between media is simple too. The 
reason is that its structural information is inherent and need not be encoded and transmitted in 
addition to the actual data. This implicitness of structural information is particularly convenient in 
the case of moving storage media, because they impose strict timing constraints on transmission 
of consecutive elements. Therefore, the process which generates (or consumes) the data must 
be effectively decoupled from the transmission process that observes the timing constraints. In 
the case of sequences, this decoupling is simple to achieve by dividing a sequence into 
subsequences which are buffered. A sequence is output to the storage medium by alternately 
generating data (and filling the buffer holding the current subsequence) and transmitting data 
(fetching elements from the buffer and transmitting them). The size of the subsequences (and the 
buffer) depends on the storage medium under consideration: there must be no timing constraints 
between accesses to consecutive subsequences. 

The file is not a static data structure like the array or the record, because the length may increase 
dynamically, i.e. during program execution. On the other hand, the sequence is less flexible than 
general dynamic structures, because it cannot change its form, but only its length, since elements 
can only be appended but not inserted. It might therefore be called a semi-dynamic structure. 

The discipline of purely sequential access to a file is enforced by restricting access to calls of 
specific procedures, typically read and write procedures for scanning and generating a file. In the 
jargon of data processing, a file must be opened before reading or writing is possible. The 
opening implies the initialization of a reading and writing mechanism, and in particular the fixing of 
its initial position. Hence each (opened) file not only has a value and a length, but also a position 
attributed to it. If reading must occur from several positions (still sequentially) alternately, the file 
is "multiply opened"; it implies that the same file is represented by several variables, each 
denoting a different position. 

This widespread view of files is conceptually unappealing, and the Oberon file system therefore 
departs from it by introducing the notion of a rider. A file simply has a value, the sequence of 
bytes, and a length, the number of bytes in the sequence. Reading and writing occurs through a 
rider, which denotes a position. "Multiple opening" is achieved by simply using several riders 
riding on the same file. Thereby the two concepts of data structure (file) and access mechanism 
(rider) are clearly distinct and properly disentangled. 

Given a file f, a rider r is placed on a file by the call Files.Set (r, f, pos), where pos indicates the 
position from which reading or writing is to start. Calls of Files.Read (r, x) and Files.Write (r, x) 
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implicitly increment the position beyond the element read or written, and the file is implicitly 
denoted via the explicit parameter r, which denotes a rider. The rider has two (visible) attributes, 
namely r.eof and r.res. The former is set to FALSE by Files.Set, and to TRUE when a read 
operation could not be performed, because the end of the file had been reached. r.res serves as 
a result variable in procedures ReadBytes and WriteBytes allowing one to check for correct 
termination. 

A file system must not only provide the concept of a sequence with its accessing mechanism, but 
also a registry. This implies that files be identified, that they can be given a name by which they 
are registered and retrieved. The registry or collection of registered names is called the file 
system's directory. Here we wish to emphasize that the concepts of files as data structure with 
associated access facilities on the one hand, and the concept of file naming and directory 
management on the other hand must also be considered separately and as independent notions. 
In fact, in the Oberon system their implementation underscores this separation by the existence 
of two modules: Files and FileDir. The following procedures are available. They are summarized 
by the interface specification (definition) of module Files. 

DEFINITION Files; 
 TYPE File = POINTER TO FileDesc; 
  FileDesc = RECORD END ; 
   Rider = RECORD eof: BOOLEAN; res: INTEGER END ; 

 PROCEDURE Old(name: ARRAY OF CHAR): File; 
 PROCEDURE New(name: ARRAY OF CHAR): File; 
 PROCEDURE Register(f: File); 
 PROCEDURE Close(f: File); 
 PROCEDURE Purge(f: File); 
 PROCEDURE Length(f: File): INTEGER; 
 PROCEDURE Date(f: File): INTEGER); 

 PROCEDURE Set(VAR r: Rider; f: File; pos: INTEGER); 
 PROCEDURE ReadByte(VAR r: Rider; VAR x: BYTE); 
 PROCEDURE ReadBytes(VAR r: Rider; VAR x: ARRAY OF BYTE; n: INTEGER); 
 PROCEDURE Read(VAR r: Rider; VAR ch: CHAR); 
 PROCEDURE ReadInt(VAR r: Rider; VAR n: INTEGER); 
 PROCEDURE ReadSet(VAR r: Rider; VAR s: SET); 
 PROCEDURE ReadReal(VAR r: Rider; VAR x: REAL); 
 PROCEDURE ReadString(VAR r: Rider; VAR s: ARRAY OF CHAR); 
 PROCEDURE ReadNum(VAR r: Rider; VAR n: INTEGER); 

 PROCEDURE WriteByte(VAR r: Rider; x: BYTE); 
 PROCEDURE WriteBytes(VAR r: Rider; x: ARRAY OF BYTE; n: INTEGER); 
 PROCEDURE WriteInt(VAR r: Rider; n: INTEGER); 
 PROCEDURE WriteSet(VAR r: Rider; s: SET); 
 PROCEDURE WriteReal(VAR r: Rider; x: REAL); 
 PROCEDURE WriteString(VAR r: Rider; x: ARRAY OF CHAR); 
 PROCEDURE WriteNum(VAR r: Rider; n: INTEGER); 
 PROCEDURE Pos(VAR r: Rider): INTEGER; 
 PROCEDURE Base(VAR r: Rider): File; 

 PROCEDURE Rename(old, new: ARRAY OF CHAR; VAR res: INTEGER); 
 PROCEDURE Delete(name: ARRAY OF CHAR; VAR res: INTEGER); 
END Files. 

New(name) yields a new (empty) file without registering it in the directory. Old(name) retrieves 
the file with the specified name, or yields NIL, if it is not found in the directory. Register(f) inserts 
the name of f (specified in the call of New) in the directory. An already existing entry with this 
name is replaced. Close(f) must be called after writing is completed and the file is not to be 
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registered. Close actually stands for "close buffers", and is implied in the procedure Register. 
Procedure Purge will be explained at the end of section 7.2. 

The sequential scan of a file f (reading characters) is programmed as shown in the following 
template: 

VAR f: Files.File; r: Files.Rider; 

f := Files.Old(name); 
IF f # NIL THEN 
 Files.Set (r, f, 0); Files.Read (r, x); 
 WHILE ~ r.eof DO ... x ...; Files.Read(r, x) END 
END 

The analogous template for a purely sequential writing is: 

f := Files.New(name); Files.Set(r, f, 0); 
WHILE ... DO Files.Write (r, x); ... END 
Files.Register(f) 

There exist two further procedures; they do not change any files, but only affect the directory. 
Delete(name, res) causes the removal of the named entry from the directory. Rename(old, new, 
res) causes the replacement of the directory entry old by new. 

It may surprise the reader that these two procedures, which affect the directory only, are exported 
from module Files instead of FileDir. The reason is that the presence of the two modules, 
together forming the file system, is also used for separating the interface into a public and a 
private (or semi-public) part. The definition (in the form of a symbol file) of FileDir is not intended 
to be freely available, but restricted to use by system programmers. This allows the export of 
certain sensitive data, (such as file headers) and sensitive procedures (such as Enumerate) 
without the danger of misuse by inadvertent users. 

Module Files constitutes a most important interface whose stability is utterly essential, because it 
is used by almost every module programmed. During the entire time span of development of the 
Oberon system, this interface had changed only once. We also note that this interface is very 
terse, a factor contributing to its stability. Yet, the offered facilities have in practice over years 
proved to be both necessary and sufficient. 

7.2 Implementation of files on a random-access store 
A file cannot be allocated as a block of contiguous storage locations, because its length is not 
fixed. Neither can it be represented as a linked list of individual elements, because this would 
lead to inefficient use of storage - more might be used for the links than the elements themselves. 
The solution generally adopted is a compromise between the two extremes: files are represented 
as lists of blocks (subsequently called sectors) of fixed length. A block is appended when the last 
one is filled. On the average, each file therefore wastes half of a sector. Typical sector sizes are 
0.5, 1, 2, or 4 Kbytes, depending on the device used as store. 

It immediately follows that access to an element is not as simple as in the case of an array. The 
primary concern in the design of a file system and access scheme must be the efficiency of 
access to individual elements while scanning the sequence, at least in the case when the next 
element lies within the same sector. This access must be no more complicated than a 
comparison of two variables followed by an indexed access to the file element and the 
incrementing of an address pointing to the element's successor. If the successor lies in another 
sector, the procedure may be more involved, as transitions to the next sector occur much less 
frequently. 

The second most crucial design decision concerns the data structure in which sectors are 
organized; it determines how a succeeding sector is located. The simplest solution is to link 
sectors in a list. This is acceptable if access is to be restricted to purely sequential scans. 
Although this would be sufficient for most applications, it is unnecessarily restrictive for media 
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other than purely sequential ones (tapes). After all, it is sometimes practical to position a rider at 
an arbitrary point in the file rather than always at its beginning. This is made possible by the use 
of an indexed sector table, typically stored as a header in the file. The table is an array of the 
addresses of the file's data sectors. Unfortunately, the length of the table needed is unknown. 
Choosing a fixed length for all files is controversial, because it inevitably leads to either a 
limitation of file length (when chosen too small) that is unacceptable in some applications, or to a 
large waste of file space (when chosen too large). Experience shows that in practice most files 
are quite short, i.e. in the order of a few thousand bytes. The dilemma is avoided by a two-level 
table, i.e. by using a table of tables. 

The scheme chosen in Oberon is slightly more complex in order to favor short files (< 64 K 
bytes): Each file header contains a table of 64 entries, each pointing to a 1K byte sector. 
Additionally, it contains a table of 12 entries, the so-called extensions, each pointing to an index 
sector containing 256 further sector pointers. The file length is thereby limited to 64 + 12*256 
sectors, or 3'211'264 bytes (minus the length of the header). The chosen structure is illustrated in 
Fig. 7.1. sec[0] always points to the sector containing the file header. 

Figure 7.1 File header and extension sectors 

The header contains some additional data, namely the length of the file (in bytes), its name, and 
date and time of its creation. The size of the header is 352 bytes; the remaining 672 bytes of the 
first sector are used for data. Hence, truly short files occupy a single sector only. The declaration 
of the file header is contained in the definition of module FileDir. An abbreviated version 
containing the fields relevant so far is: 

FileHeader = RECORD 
 leng: INTEGER; 
 ext: ARRAY 12 OF SectorPointer; 
 sec: ARRAY 64 OF SectorPointer 
END 

We now turn our attention to the implementation of file access, and first present a system that 
uses main storage for the file data instead of a disk and therefore avoids the problems introduced 
by sector buffering. The key data structure in this connection is the Rider, represented as a 
record. 

Rider = RECORD 
 eof: BOOLEAN; res, pos, adr: INTEGER; 
 file: File 
END 

A rider is initialised by a call Set(r, f, pos), which places the rider r on file f at position pos. From 
this it is clear that the rider record must contain fields denoting the attached file and the rider's 
position on it. We note that they are not exported. However, their values can be obtained by the 
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function procedures Pos(r) and Base(r). This allows a (hidden) representation most appropriate 
for an efficient implementation of Read and Write without being unsafe. 

Consider now the call Read(r, x); its task is to assign the value of the byte designated by the 
rider's position to x and to advance the position to the next byte. Considering the structure by 
which file data are represented, we easily obtain the following program, assuming that the 
position is legal, i.e. non-negative and less than the file's length. a, b, c are local variables, HS is 
the size of the header (in sector 0), SS is the sector size, typically a power of 2 in order to make 
division efficient. 

a := (r.pos + HS) DIV SS;  b := (r.pos + HS) MOD SS; 
IF a < 64 THEN c := r.file.sec[a] 
ELSE c := r.file.ext[(a - 64) DIV 256].sec[(a - 64) MOD 256] 
END ; 
SYSTEM.GET(c + b, x) ; INC (r.pos) 

In order to gain efficiency, we use the low-level procedure GET that assigns the value at address 
c+b to x. This program is reasonably short, but involves considerable address computations at 
every access, and in particular at positions larger than 64 * SS. Fortunately, there exists an easy 
remedy, namely that of caching the address of the current position. This explains the presence of 
the field adr in the rider record. The resulting program is shown below; note that in order to avoid 
the addition of HS, pos is defined to denote the genuine position, i.e. the abstract position 
augmented by HS. 

SYSTEM.GET(r.adr, x); INC(r.adr); INC(r.pos); 
IF r.pos MOD SS = 0 THEN 
 m := r.pos DIV SS; 
 IF m < 64 THEN r.adr := r.file.sec[m] 
 ELSE r.adr := r.file.ext[(m - 64) DIV 256].sec[(m - 64) MOD 256] 
 END 
END 

We emphasize that in all but one out of 1024 cases only three instructions and a single test are to 
be executed. This improvement therefore is crucial to the efficiency of file access, and to that of 
the entire Oberon System. We now present the entire file module (for files on a random-access 
store). 

MODULE MFiles;   (*NW 24.8.90 / 12.10.90 / 20.6.2013*) 
 IMPORT SYSTEM, Kernel, FileDir; 
 (*A file consists of a sequence of sectors. The first sector contains the header. 
  Part of the header is the sector table, an array of addresses to the sectors. 
  A file is referenced through riders each of which indicates a position.*) 

 CONST 
  HS = FileDir.HeaderSize; 
  SS = FileDir.SectorSize; 
  STS = FileDir.SecTabSize; 
  XS = FileDir.IndexSize; 

 TYPE File*   = POINTER TO FileDesc; 
  Index  = POINTER TO IndexRecord; 
  IndexRecord = RECORD sec: FileDir.IndexSector END ; 

  Rider* = 
   RECORD eof*: BOOLEAN; 
    res*, pos, adr: INTEGER; 
    file: File 
   END ; 

  FileDesc = 
   RECORD mark: INTEGER; 
    name: FileDir.FileName; 
    len, date: INTEGER; 
    ext:  ARRAY FileDir.ExTabSize OF Index; 
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    sec: FileDir.SectorTable 
   END ; 

 PROCEDURE Old*(name: ARRAY OF CHAR): File; 
  VAR head: INTEGER; 
   namebuf: FileDir.FileName; 
 BEGIN 
  FileDir.Search(name, head); RETURN SYSTEM.VAL(File, head) 
 END Old; 

 PROCEDURE New*(name: ARRAY OF CHAR): File; 
  VAR f: File; head: INTEGER; 
 BEGIN f := NIL; Kernel.AllocSector(0, head); 
  IF head # 0 THEN 
   f := SYSTEM.VAL(File, head); f.mark := FileDir.HeaderMark; 
   f.len := HS; f.name := name; 
   f.date := Kernel.Clock(); f.sec[0] := head 
  END ; 
  RETURN f 
 END New; 

 PROCEDURE Register*(f: File); 
 BEGIN 
  IF (f # NIL) & (f.name[0] > 0X) THEN FileDir.Insert(f.name, f.sec[0]) END ; 
 END Register; 

 PROCEDURE Length*(f: File): INTEGER; 
 BEGIN RETURN f.len - HS 
 END Length; 

 PROCEDURE Date*(f: File): INTEGER; 
 BEGIN RETURN f.date 
 END Date; 

 PROCEDURE Set*(VAR r: Rider; f: File; pos: LONGINT); 
  VAR m, n: INTEGER; 
 BEGIN  r.eof := FALSE; r.res := 0; 
  IF f # NIL THEN 
   IF pos < 0 THEN r.pos := HS 
   ELSIF pos > f.len - HS THEN r.pos := f.len 
   ELSE r.pos := pos + HS 
   END ; 
   r.file := f; m := r.pos DIV SS; n := r.pos MOD SS; 
   IF m < STS THEN r.adr := f.sec[m] + n 
   ELSE r.adr := f.ext[(m-STS) DIV XS].sec[(m-STS) MOD XS] + n 
   END 
  END 
 END Set; 

 PROCEDURE ReadByte*(VAR r: Rider; VAR x: BYTE); 
  VAR m: INTEGER; 
 BEGIN 
  IF r.pos < r.file.len THEN 
   SYSTEM.GET(r.adr, x); INC(r.adr); INC(r.pos); 
   IF r.adr MOD SS = 0 THEN 
    m := r.pos DIV SS; 
    IF m < STS THEN r.adr := r.file.sec[m] 
    ELSE r.adr := r.file.ext[(m-STS) DIV XS].sec[(m-STS) MOD XS] 
    END 
   END 
  ELSE x := 0; r.eof := TRUE 
  END 
 END ReadByte; 
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 PROCEDURE WriteByte*(VAR r: Rider; x: BYTE); 
  VAR k, m, n, ix: INTEGER; 
 BEGIN 
  IF r.pos < r.file.len THEN 
   m := r.pos DIV SS; INC(r.pos); 
   IF m < STS THEN r.adr := r.file.sec[m] 
   ELSE r.adr := r.file.ext[(m-STS) DIV XS].sec[(m-STS) MOD XS] 
   END 
  ELSE  
   IF r.adr MOD SS = 0 THEN 
    m := r.pos DIV SS; 
    IF m < STS THEN Kernel.AllocSector(0, r.adr); r.file.sec[m] := r.adr 
    ELSE n := (m - STS) DIV XS; k := (m - STS) MOD XS; 
     IF k = 0 THEN (*new index*) 
      Kernel.AllocSector(0, ix); r.file.ext[n] := SYSTEM.VAL(Index, ix) 
     END ; 
     Kernel.AllocSector(0, r.adr); r.file.ext[n].sec[k] := r.adr 
    END 
   END ; 
   INC(r.pos); r.file.len := r.pos 
  END ; 
  SYSTEM.PUT(r.adr, x); INC(r.adr) 
 END WriteByte; 

 PROCEDURE Pos*(VAR r: Rider): INTEGER; 
 BEGIN RETURN r.pos - HS 
 END Pos; 

 PROCEDURE Base*(VAR r: Rider): File; 
 BEGIN RETURN r.file 
 END Base; 
END MFiles. 

Allocation of a new sector occurs upon creating a file (Files.New), and when writing at the end of 
a file after the current sector had been filled. Procedure AllocSector yields the address of the 
allocated sector. It is determined by a search in the sector reservation table for a free sector. In 
this table, every sector is represented by a single bit indicating whether or not the sector is 
allocated. Although conceptually belonging to the file system, this table resides within module 
Kernel. 

Deallocation of a file's sectors could occur as soon as the file is no longer accessible, neither 
through a variable of any loaded module nor from the file directory. However, this moment is 
difficult to determine. Therefore, the method of garbage collection is used in Oberon for the 
deallocation of file space. In consideration of the fact that file space is large and the collection of 
unused sectors relatively time-consuming, we confine this process to system initialization. It is 
represented by procedure FileDir.Init. At that time, the only referenced files are those registered 
in the directory. Init therefore scans the entire directory and records the sectors referenced in 
each file in the sector reservation table (see Sect. 7.4). 

For applications where system startup and initialization is supposed to occur very infrequently, 
such as for server systems, a procedure Files.Purge is provided. Its effect is to return the sectors 
used by the specified file to the pool of free sectors. Evidently, the programmer then bears the 
responsibility to guarantee that no references to the purged file continue to exist. This may be 
possible in a closed server system, but files should not be purged under normal circumstances, 
as a violation of said precondition will lead to unpredictable disaster. 

The following procedures used for allocating, deallocating, and marking sectors in the sector 
reservation table are defined in module Kernel: 

PROCEDURE AllocSector(hint: INTEGER; VAR sec: INTEGER);   (*used in WriteByte*) 
PROCEDURE MarkSector(sec: INTEGER);  (*used in Init*) 
PROCEDURE FreeSector(sec: INTEGER);  (*used in Purge*) 
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7.3 Implementation of files on a disk 
First we recall that the organization of files as sets of individually allocated blocks (sectors) is 
inherently required by the allocation considerations of dynamically growing sequences. However, 
if the storage medium is a tape, a disk, or a flash-RAM, there exists an additional reason for the 
use of blocks. They constitute the subsequences to be individually buffered for transmission in 
order to overcome the timing constraints imposed by the medium. If an adequate space utilization 
is to be achieved, the blocks must not be too long. A typical size is 1, 2, or 4K bytes. 

This necessity of buffering has a profound influence on the implementation of file access. The 
complication arises because the abstraction of the sequence of individual bytes needs to be 
maintained. The increase in complexity of file access is considerable, as can be seen by 
comparing the program listings of the two respective implementations. 

The first, obvious measure is to copy the file's sector table into primary store when a file is 
"opened" through a call of New() or Old(). The record holding this copy is the file descriptor, and 
the value f denoting the file points to this handle (instead of the actual header on disk). The 
descriptor also contains the remaining information stored in the header, in particular the file's 
length. 

If a file is read (or written) in purely sequential manner, a single buffer is appropriate for the 
transfer of data. For reading, the buffer is filled by reading a sector from the disk, and bytes are 
picked up individually from the buffer. For writing, bytes are deposited individually, and the buffer 
is written onto disk as a whole when full. The buffer is associated with the file, and a pointer to it 
is contained in the descriptor. 

However, we recall that several riders may be placed on a file and be moved independently. It 
might be appealing to associate a buffer with each rider. But this proposal must quickly be 
rejected when we realize that several riders may be active at neighbouring positions. If these 
positions refer to the same sector, which is duplicated in the riders' distinct buffers, the buffers 
may easily become inconsistent. Obviously, buffers must not be associated with riders, but with 
the file itself. The descriptor therefore contains the head of a list of linked buffers. Each buffer is 
identified by its position in the file. An invariant of the system is that no two buffers represent the 
same sector. 

Even with the presence of a single rider, the possibility of having several buffers associated with a 
file can be advantageous, if a rider is frequently repositioned. It becomes a question of strategy 
and heuristics when to allocate a new buffer. In the Oberon system, we have adopted the 
following solution: 

1. The first buffer is created when the file is opened (New, Old). 
2. Additional buffers may be allocated when a rider is placed (or repositioned) on the file. 
3. At most four buffers are connected to the same file. 
4. Purely sequential movements of riders do not cause allocation of buffers. 
5. Separate buffers are generated when extensions of the file's sector table need be accessed 

(rider position > 64K). Each buffers the 256 sector addresses of the respective index sector. 

The outlined scheme requires and is based upon the following data structures and types: 
File = POINTER TO FileDesc; 
Buffer = POINTER TO BufferRecord; 
Index = POINTER TO IndexRecord; 

FileDesc = RECORD next: File; 
  aleng, bleng: INTEGER; (*file length*) 
  nofbufs: INTEGER; (*no. of buffers allocated*) 
  modH, registered: BOOLEAN;  (*header has been modified*) 
  firstbuf: Buffer: (*head of buffer chain*) 
  sechint: DiskAdr; (*sector hint*) 
  name: FileDir.FileName; 
  date: INTEGER; 
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  ext: ARRAY FileDir.ExTabSize OF Index; 
  sec: ARRAY 64 OF DiskAdr 
 END; 

BufferRecord = RECORD apos, lim: INTEGER; (*lim = no. of bytes*) 
  mod: BOOLEAN; (*buffer has been modified*) 
  next: Buffer;  (*buffer chain*) 
  data: FileDir.DataSector 
 END; 

IndexRecord = RECORD adr: DiskAdr; 
  mod: BOOLEAN; (*index record has been modified*) 
  sec: FileDir.IndexSector 
 END; 

Rider = RECORD eof: BOOLEAN; (*end of file reached*) 
  res: INTEGER; (*no. of unread bytes*) 
  file: File; 
  apos, bpos: INTEGER; (*position*) 
  buf: Buffer (*hint: likely buffer*) 
 END ; 

In order to increase efficiency of access, riders have been provided with a field containing the 
address of the element of the rider's position. From the conditions stated above for the allocation 
of buffers, it is evident that the value of this field can be a hint only. This implies that there can be 
no reliance on its information. Whenever it is used, its validity has to be checked. The check 
consists in a comparison of the riders' position r.apos with the hinted buffer's actual position 
r.buf.apos. If they differ, a buffer with the desired position must be searched and, if not present, 
allocated. The advantage of the hint lies in the fact that the hint is correct with a very high 
probability. The check is included in procedures Read, ReadByte, Write, and WriteByte. 

Some fields of the record types require additional explanations: 

1. The length is stored in a "preprocessed" form, namely by the two integers aleng and bleng 
such that aleng is a sector number and 

length = (aleng * SS) + bleng - HS 
aleng = (length + HS) DIV SS 
bleng = (length + HS) MOD SS 

The same holds for the form of the position in riders (apos, bpos). 

2. The field nofbufs indicates the number of buffers in the list headed by firstbuf: 

1 <= nofbufs <= Maxbufs. 

3. Whenever data are written into a buffer, the file becomes inconsistent, i.e. the data on the disk 
are outdated. The file is updated, i.e. the buffer is copied into the corresponding disk sector, 
whenever the buffer is reallocated, e.g. during sequential writing after the buffer is full and is 
"advanced". During sequential reading, a buffer is also advanced and reused, but needs not be 
copied onto disk, because it is still consistent. Whether a buffer is consistent or not is indicated by 
its state variable mod (modified). Similarly, the field modH in the file descriptor indicates whether 
or not the header had been modified. 

4. The field sechint records the number of the last sector allocated to the file and serves as a hint 
to the kernel's allocation procedure, which allocates a next sector with an address larger than the 
hint. This is a measure to gain speed in sequential scans. 

5. The buffer's position is specified by its field apos. Used as index in the file header's sector 
table, it yields the sector corresponding to the current buffer contents. The field lim specifies the 
number of bytes s stored in the buffer. Reading cannot proceed beyond this limiting index; writing 
beyond it implies an increase in the file's length. All buffers except the one for the last sector are 
filled and specify lim = SS. 
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6. The hidden rider field buf is merely a hint to speed up localization of the concerned buffer. A 
hint is likely, but not guaranteed to be correct. Its validity must be checked before use. The buffer 
hint is invalidated when a buffer is reallocated and/or a rider is repositioned. 

The structure of riders remains practically the same as for files using main store. The hidden field 
adr is merely replaced by a pointer to the buffer covering the rider's position. A configuration of a 
file f with two riders is shown in Fig 7.2. 

 
Figure 7.2  File f with two riders and two buffers 

Some comments concerning module Files follow. 

1. After the writing of a file has been completed, its name is usually registered in the directory. 
Register invokes procedure Unbuffer. It inspects the associated buffers and copies those onto 
disk which had been modified. During this process, new index sectors may have to be transferred 
as well. If a file is to remain anonymous and local to a module or command, i.e. is not to be 
registered, but merely to be read, the release of buffers must be specified by an explicit call to 
Close (meaning "close buffers"), which also invokes Unbuffer. 

2. Procedure Old (and for reasons of consistency also New) deviates from the general Oberon 
programming rule that an object be allocated by the calling (instead of the called) module. This 
rule would suggest the statements 

New(f); Files.Open(f, name) 

instead of f := Files.Old(name). The justification for the rule is that any extension of the type of f 
could be allocated, providing for more flexibility. And the reason for our deviation in the case of 
files is that, upon closer inspection, not a new file, but only a new descriptor is to be allocated. 
The distinction becomes evident when we consider that several statements f := Files.Old(name) 
with different f and identical name may occur, probably in different modules. In this case, it is 
necessary that the same descriptor is referenced by the delivered pointers in order to avoid file 
inconsistency. Each (opened) file must have exactly one descriptor. When a file is opened, the 
first action is therefore to inspect whether a descriptor of this file already exists. For this purpose, 
all descriptors are linked together in a list anchored by the global variable root and linked by the 
descriptor field next. This measure may seem to solve the problem of avoiding inconsistencies 
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smoothly. However, there exists a pitfall that is easily overlooked: All opened files would 
permanently remain accessible via root, and the garbage collector could never remove a file 
descriptor nor its associated buffers. This would be unacceptable. In order to hide this list from 
the garbage collector, it is represented by integers (addresses) instead of pointers. 

3. Sector pointers are represented by sector numbers of type INTEGER. Actually, we use the 
numbers multiplied by 29. This implies that any single-bit error leads to a number which is not a 
multiple of 29, and hence can easily be detected. Thereby the crucial sector addresses are 
software parity checked and are safe (against single-bit errors) even on computers without 
hardware parity check. The check is performed by procedures Kernel.GetSector and 
Kernel.PutSector. 

7.4 The file directory 
A directory is a set of pairs, each pair consisting of a name (key) and an object (here: file). It 
serves to retrieve objects by their name. If efficiency matters, the directory is organized as an 
ordered set, ordered according to the keys. The most frequently used structures for ordered sets 
are trees and hash tables. The latter have disadvantages when the size of the set is unknown, 
particularly when its order of magnitude is unknown, and when deletions occur. The Oberon 
system therefore uses a tree structure for its file directory, more specifically a B-tree, which was 
developed especially for cases where not individual pairs, but only sets of pairs as a whole 
(placed on a disk sector) can be accessed. 

For a thorough study of B-trees we refer the reader to the literature [1, 2]. Here it must suffice to 
specify the B-tree's principal characteristics: 
1. In a B-tree of order N, each node (called page) contains m elements (pairs), where N <= m <= 

2N, except the root, where 0 <= m <= 2N. 
2. A page with m elements has either 0 descendants, in which case it is called a leaf page, or m + 

1 descendants. 
3. All leaf pages are on the same (bottom) level. 

From 3. it follows that the B-tree is a balanced tree. Its height, and with it the longest path's 
length, has an upper bound of, roughly, 2 * log k, where k is the number of elements and the 
logarithm is taken to the base N and rounded up to the next larger integer. Its minimal height is 
log k taken to the base 2N. 

On each page, space must be available for 2N elements and for 2N + 1 references to 
descendants. Hence, N is immediately determined by the size of a page and the size of elements. 
In the case of the Oberon system, names are limited to 32 characters (bytes), and the object is a 
reference to the associated file (4 bytes). Each descendant pointer takes 4 bytes, and the page 
size is given by the sector size (1024) minus the number of bytes needed to store m (2 bytes). 
Hence 

N = ((1024 - 2 - 4) DIV (32 + 4 + 4)) DIV 2 = 12 

A B-tree of height h and order 12 may contain the following minimal and maximal number of 
elements: 

height minimum maximum 
1 0 24 
2 25 624 
3 625 15624 
4 15625 390624 

It follows that the height of the B-tree will never be larger than 4, if the disk has a capacity of less 
than about 400 Mbyte, and assuming that each file occupies a single 1K sector. It is rarely larger 
than 3 in practice. 
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The definition of module FileDir shows the available directory operations. Apart from the 
procedures Search, Insert, Delete, and Enumerate, it contains some data definitions, and it 
should be considered as the non-public part of the file system's interface. 

DEFINITION FileDir; 
 IMPORT SYSTEM, Kernel; 
 CONST 
  FnLength = 32; (*max length of file name*) 
  SecTabSize = 64; (*no. of entries in primary table*) 
  ExTabSize = 12; 
  SectorSize = 1024; 
  IndexSize = SectorSize DIV 4; (*no. of entries in index sector*) 
  HeaderSize = 352; 
  DirRootAdr = 29; 
  DirPgSize = 24; (*max no. of elements on page*) 

 TYPE DiskAdr = INTEGER;  
  FileName = ARRAY FnLength OF CHAR; 
  SectorTable = ARRAY SecTabSize OF DiskAsr; 
  ExtensionTable = ARRAY ExTabSize OF DiskAdr; 
  EntryHandler = PROCEDURE (name: FileName; sec: DiskAdr; VAR continue: BOOLEAN); 

  FileHeader = RECORD (*first page of each file on disk*)  
    mark: INTEGER; 
    name: FileName; 
    aleng, bleng, date: INTEGER; 
    ext: ExtensionTable; 
    sec: SectorTable 
   END ; 

  IndexSector = RECORD (Kernel.Sector)  
    x: ARRAY IndexSize OF LONGINT; 
   END ; 

  DataSector = ARRAY SectorSize OF BYTE; 

  DirEntry = RECORD  
    name: FileName; 
    adr, p: DiskAdr 
   END ; 

  DirPage = RECORD  
    mark: INTEGER; 
    m: INTEGER; (*no. of elements on page*) 
    p0: DiskAdr; 
    e: ARRAY DirPgSize OF DirEntry; 
   END ; 

 PROCEDURE Search(name: FileName; VAR fad: DiskAdr); 
 PROCEDURE Insert(name: FileName; fad: DiskAdr); 
 PROCEDURE Delete(name: FileName; VAR fad: DiskAdr); 
 PROCEDURE Enumerate(prefix: ARRAY OF CHAR; proc: EntryHandler); 

END FileDir. 

Procedures Search, Insert, and Delete represent the typical operations performed on a directory. 
Efficiency of the first operation is of primary importance. But the B-tree structure also guarantees 
efficient insertion and deletion, although the code for these operations is complex. Procedure 
Enumerate is used to obtain excerpts of the directory. The programmer must guarantee that no 
directory changes are performed by the parametric procedure of Enumerate. 

As in the presentation of module Files, we first discuss a version that uses main storage rather 
than a disk for the directory. This allows us to concentrate on the algorithms for handling the 
directory, leaving out the additional complications due to the necessity to read pages (sectors) 
into main store for selective updating and of restoring them onto disk. In particular, we point out 
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the definitions of the data types for B-tree nodes, called DirPage, and elements, called DirEntry. 
The component E.p of an entry E points to the page in which all elements (with index k) have 
keys E.p.e[k].name > E.name. The pointer p.p0 points to a page in which all elements have keys 
p.p0.e[k].name < p.e[0].name. We can visualize these conditions by Fig. 7.3, where names have 
been replaced by integers as keys. 

 
Figure 7.3  Example of a B-tree of order 2 

Procedure Search starts by inspecting the root page. It performs a binary search among its 
elements, according to the following algorithm. Let e[0 ... m-1] be the ordered keys and x the 
search argument. 

L := 0;  R := m; 
WHILE L < R DO 
 i := (L+R) DIV 2; 
 IF x <= e[i] THEN R := i ELSE L := i  + 1 END 
END; 
IF (R < m) & (x = e[R]) THEN found END 

The invariant is 

e[L-1] < x <= e[R] 

If the desired element is not found, the search continues on the appropriate descendant page, if 
there is one. Otherwise the element is not contained in the tree. 

Procedures insert and delete use the same algorithm for searching an element within a page. 
However, they use recursion instead of iteration to proceed along the search path of pages. We 
recall that the depth of recursion is at most four. The reason for the use of recursion is that it 
facilitates the formulation of structural changes, which are performed during the "unwinding" of 
recursion, i.e. on the return path. First, the insertion point (respectively the position of the element 
to be deleted) is searched, and then the element is inserted (deleted). 

Upon insertion, the number of elements on the insertion page may become larger than 2N, 
violating B-tree condition 1. This situation is called page overflow. The invariant must be 
reestablished immediately. It could be achieved by moving one element from either end of the 
array e onto a neighbouring page. However, we choose not to do this, and instead to split the 
overflowing page into two pages immediately. The process of a page split is visualized by Fig 7.4, 
in which we distinguish between three cases, namely R < N, R = N, and R > N, where R marks 
the insertion point. a denotes the overflowing, b the new page, and u the inserted element. 

The 2N + 1 elements (2N from the full page a, plus the one element u to be inserted) are equally 
distributed onto pages a and b. One element v is pushed up in the tree. It must be inserted in the 
ancestor page of a. Since that page obtains an additional descendant, it must also obtain an 
additional element in order to maintain B-tree rule 2. 

A page split may thus propagate, because the insertion of element v in the ancestor page may 
require a split once again. If the root page is full, it is split too, and the emerging element v is 
inserted in a new root page containing a single element. This is the only way in which the height 
of a B-tree can increase. 
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Figure 7.4  Page split when inserting element u 

When an element is to be deleted, it cannot simply be removed, if it resides on an internal page. 
In this case, it is first replaced by another element, namely one of the two neighbouring elements 
on a leaf page, i.e. the next smaller (or next larger) element, which is always on a leaf page. In 
the presented solution, the replacing element is the largest on the left subtree (see procedure 
del). Hence, the actual deletion always occurs on a leaf page. 

Upon deletion, the number of elements in a page may become less than N, violating invariant 1. 
This event is called page underflow. Since restructuring the tree is a relatively complicated 
operation, we first try to reestablish the invariant by borrowing an element from a neighbouring 
page. In fact, it is reasonable to borrow several elements, and thereby to decrease the likelihood 
of an underflow on the same page upon further deletions. The number of elements that could be 
taken from the neighbouring page b is b.m - N. Hence we will borrow 

k = (b.m - N + 1) DIV 2 

elements. The process of page balancing then distributes the elements of the underflowing and 
its neighbouring page equally to both pages (see procedure underflow). 

However, if (and only if) the neighbouring page has no elements to spare, the two pages can and 
must be united. This action, called page merge, places the N-1 elements from the underflowing 
page, the N elements from the neighbouring page, plus one element from the ancestor page onto 
a single page of size 2N. One element must be taken from the ancestor page, because that page 
loses one descendant and invariant rule 2 must be maintained. The events of page balancing and 
merging are illustrated in Fig 7.5. a is the underflowing page, b its neighbouring page, and c their 
ancestor; s is the position in the ancestor page of (the pointer to the) underflowing page a. Two 
cases are distinguished, namely whether the underflowing page is the rightmost element (s = 
c.m) or not (see procedure underflow). 
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Figure 7.5  Page balancing and merging when deleting element 

Similarly to the splitting process, merging may propagate, because the removal of an element 
from the ancestor page may again cause an underflow, and perhaps a merge. The root page 
underflows only if its last element is removed. This is the only way in which the B-tree's height 
can decrease. 

MODULE BTree; 
 IMPORT Texts, Oberon; 

 CONST N = 3; 

 TYPE Page = POINTER TO PageRec; 

  Entry = RECORD 
      key, data: INTEGER; 
      p: Page 
      END ; 

  PageRec = RECORD 
      m: INTEGER;  (*no. of entries on page*) 
      p0: Page; 
      e: ARRAY 2*N OF Entry 
      END ; 

 VAR root: Page; W: Texts.Writer; 

PROCEDURE search(x: INTEGER; VAR p: Page; VAR k: INTEGER); 
 VAR i, L, R: INTEGER; found: BOOLEAN; a: Page; 
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BEGIN a := root; found := FALSE; 
 WHILE (a # NIL) & ~found DO  
  L := 0; R := a.m;  (*binary search*) 
  WHILE L < R DO 
   i := (L+R) DIV 2; 
   IF x <= a.e[i].key THEN R := i ELSE L := i+1 END 
  END ; 
  IF (R < a.m) & (a.e[R].key = x) THEN found := TRUE 
  ELSIF R = 0 THEN a := a.p0 ELSE a := a.e[R-1].p 
  END 
 END ; 
 p := a; k := R 
END search; 

PROCEDURE insert(x: INTEGER; a: Page; VAR h: BOOLEAN; VAR v: Entry); 
 (*a # NIL. Search key x in B-tree with root a; if found, increment counter. 
  Otherwise insert new item with key x.  If an entry is to be passed up, 
  assign it to v. h := "tree has become higher"*) 
 VAR i, L, R: INTEGER; 
  b: Page; u: Entry; 
BEGIN (*a # NIL & ~h*) 
 L := 0; R := a.m;  (*binary search*) 
 WHILE L < R DO 
  i := (L+R) DIV 2; 
  IF x <= a.e[i].key THEN R := i ELSE L := i+1 END 
 END ; 
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*) INC(a.e[R].data) 
 ELSE (*item not on this page*) 
  IF R = 0 THEN b := a.p0 ELSE b := a.e[R-1].p END ; 
  IF b = NIL THEN (*not in tree, insert*) 
   u.p := NIL; h := TRUE; u.key := x 
  ELSE insert(x, b, h, u) 
  END ; 
  IF h THEN (*insert u to the left of a.e[R]*) 
   IF a.m < 2*N THEN 
    h := FALSE; i := a.m; 
    WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ; 
    a.e[R] := u; INC(a.m) 
   ELSE NEW(b); (*overflow; split a into a,b and assign the middle entry to v*) 
    IF R < N THEN (*insert in left page a*) 
     i := N-1; v := a.e[i]; 
     WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ; 
     a.e[R] := u; i := 0; 
     WHILE i < N DO b.e[i] := a.e[i+N]; INC(i) END 
    ELSE (*insert in right page b*) 
     DEC(R, N); i := 0; 
     IF R = 0 THEN v := u 
     ELSE v := a.e[N]; 
      WHILE i < R-1 DO b.e[i] := a.e[i+N+1]; INC(i) END ; 
      b.e[i] := u; INC(i) 
     END ; 
     WHILE i < N DO b.e[i] := a.e[i+N]; INC(i) END 
    END ; 
    a.m := N; b.m := N; b.p0 := v.p; v.p := b 
   END 
  END 
 END 
END insert; 

PROCEDURE underflow(c, a: Page; s: INTEGER; VAR h: BOOLEAN); 
 (*a = underflowing page, c = ancestor page, 
  s = index of deleted entry in c*) 
 VAR b: Page; 
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  i, k: INTEGER; 
BEGIN (*h & (a.m = N-1) & (c.e[s-1].p = a) *) 
 IF s < c.m THEN (*b := page to the right of a*) 
  b := c.e[s].p; k := (b.m-N+1) DIV 2; (*k = nof items available on page b*) 
  a.e[N-1] := c.e[s]; a.e[N-1].p := b.p0; 
  IF k > 0 THEN (*balance by moving k-1 items from b to a*) i := 0; 
   WHILE i < k-1 DO a.e[i+N] := b.e[i]; INC(i) END ; 
   c.e[s] := b.e[k-1]; b.p0 := c.e[s].p; 
   c.e[s].p := b; DEC(b.m, k); i := 0; 
   WHILE i < b.m DO b.e[i] := b.e[i+k]; INC(i) END ; 
   a.m := N-1+k; h := FALSE 
  ELSE (*merge pages a and b, discard b*)  i := 0; 
   WHILE i < N DO a.e[i+N] := b.e[i]; INC(i) END ; 
   i := s; DEC(c.m); 
   WHILE i < c.m DO c.e[i] := c.e[i+1]; INC(i) END ; 
   a.m := 2*N; h := c.m < N 
  END 
 ELSE (*b := page to the left of a*)  DEC(s); 
  IF s = 0 THEN b := c.p0 ELSE b := c.e[s-1].p END ; 
  k := (b.m-N+1) DIV 2; (*k = nof items available on page b*) 
  IF k > 0 THEN i := N-1; 
   WHILE i > 0 DO DEC(i); a.e[i+k] := a.e[i] END ; 
   i := k-1; a.e[i] := c.e[s]; a.e[i].p := a.p0; 
   (*move k-1 items from b to a, one to c*)  DEC(b.m, k); 
   WHILE i > 0 DO DEC(i); a.e[i] := b.e[i+b.m+1] END ; 
   c.e[s] := b.e[b.m]; a.p0 := c.e[s].p; 
   c.e[s].p := a; a.m := N-1+k; h := FALSE 
  ELSE (*merge pages a and b, discard a*) 
   c.e[s].p := a.p0; b.e[N] := c.e[s]; i := 0; 
   WHILE i < N-1 DO b.e[i+N+1] := a.e[i]; INC(i) END ; 
   b.m := 2*N; DEC(c.m); h := c.m < N 
  END 
 END 
END underflow; 

PROCEDURE delete(x: INTEGER; a: Page; VAR h: BOOLEAN); 
 (*search and delete key x in B-tree a; if a page underflow arises, 
  balance with adjacent page or merge; h := "page a is undersize"*) 
 VAR i, L, R: INTEGER; q: Page; 

 PROCEDURE del(p: Page; VAR h: BOOLEAN); 
  VAR k: INTEGER; q: Page;  (*global a, R*) 
 BEGIN k := p.m-1; q := p.e[k].p; 
  IF q # NIL THEN del(q, h); 
   IF h THEN underflow(p, q, p.m, h) END 
  ELSE p.e[k].p := a.e[R].p; a.e[R] := p.e[k]; 
   DEC(p.m); h := p.m < N 
  END 
 END del; 

BEGIN (*a # NIL*) 
 L := 0; R := a.m;  (*binary search*) 
 WHILE L < R DO 
  i := (L+R) DIV 2; 
  IF x <= a.e[i].key THEN R := i ELSE L := i+1 END 
 END ; 
 IF R = 0 THEN q := a.p0 ELSE q := a.e[R-1].p END ; 
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*) 
  IF q = NIL THEN (*a is leaf page*) 
   DEC(a.m); h := a.m < N; i := R; 
   WHILE i < a.m DO a.e[i] := a.e[i+1]; INC(i) END 
  ELSE del(q, h); 
   IF h THEN underflow(a, q, R, h) END 
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  END 
 ELSE delete(x, q, h); 
  IF h THEN underflow(a, q, R, h) END 
 END 
END delete; 

PROCEDURE Search*(key: INTEGER; VAR data: INTEGER); 
BEGIN search(key, root, data) 
END Search; 

PROCEDURE Insert*(key: INTEGER; VAR data: INTEGER); 
 VAR h: BOOLEAN; u: Entry; q: Page; 
BEGIN h := FALSE; u.data := data; insert(key, root, h, u); 
 IF h THEN (*insert new base page*) 
  q := root; NEW(root); 
  root.m := 1; root.p0 := q; root.e[0] := u 
 END 
END Insert; 

PROCEDURE Delete*(key: INTEGER); 
 VAR h: BOOLEAN; 
BEGIN h := FALSE; delete(key, root, h); 
 IF h THEN (*base page size underflow*) 
  IF root.m = 0 THEN root := root.p0 END 
 END 
END Delete; 

BEGIN NEW(root); root.m := 0 
END BTree. 

The B-tree is also a highly appropriate structure for enumerating its elements, because during the 
traversal of the tree each page is visited exactly once, and hence needs to be read (from disk) 
exactly once too. The traversal is programmed by the procedure Enumerate and uses recursion. 
It calls the parametric procedure proc for each element of the tree. The type of proc specifies as 
parameters the name and the (address of) the enumerated element. The third parameter 
continue is a Boolean VAR-parameter. If the procedure sets it to FALSE, the process of 
enumeration will be aborted. 

Enumerate is used for obtaining listings of the names of registered files. For this purpose, the 
actual procedure substituted for proc merely enters the given name in a text and ignores the 
address (sector number) of the file, unless it requires special file information such as the file's 
size or creation date. 

The set of visited elements can be restricted by specifying a string which is to be a prefix to all 
enumerated names. The least name with the specified prefix is directly searched and is the name 
(key) of the first element enumerated. The process then proceeds up to the first element whose 
name does not have the given prefix. Thereby, the process of obtaining all elements whose key 
has a given prefix avoids traversal of the whole tree, resulting in a significant speedup. If the 
prefix is the empty string, the entire tree is traversed. 

The principle behind procedure Enumerate is shown by the following sketch, where we abstract 
from the B-tree structure and omit consideration of prefixes: 

PROCEDURE Enumerate( 
  proc: PROCEDURE (name: FileName; adr: INTEGER; VAR continue: BOOLEAN)); 
 VAR continue: BOOLEAN; this: DirEntry; 
BEGIN continue := TRUE; this := FirstElement; 
 WHILE continue & (this # NIL) DO 
  proc(this.name, this.adr, continue); this := NextEntry(this) 
 END 
END Enumerate 
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From this sketch we may conclude that during the process of traversal the tree structure must not 
change, because the function NextEntry quite evidently relies on the structural information stored 
in the elements of structure itself. Hence, the actions of the parametric procedure must not affect 
the tree structure. Enumeration must not be used, for example, to delete a given set of files. In 
order to prevent the misuse of the indispensible facility of element enumeration, the interface of 
FileDir is not available to users in general.  

The handling of the directory stored on disk follows exactly the same algorithms. The accessed 
pages are fetched from the disk as a whole (each page fits onto a single disk sector) and stored 
in buffers of type DirPage, from where individual elements can be accessed. In principle, these 
buffers can be local to procedures insert and delete. A single buffer is allocated globally, namely 
the one used by procedure Search. The reason for this exception is not only that iterative 
searching requires one buffer only, but because procedure Files.Old and in turn Search may be 
called when the processor is in the supervisor mode and hence uses the system- (instead of the 
user-) stack, which is small and would not accommodate sector buffers. 

Naturally, an updated page needs to be stored back onto disk. Omission of sector restoration is a 
programming error that is very hard to diagnose, because some parts of the program are 
executed very rarely, and hence the error may look sporadic and mistakenly be attributed to 
malfunctioning hardware. 

Oberon's file directory represents a single, ordered set of name-file pairs. It is therefore also 
called a flat directory. Its internal tree structure is not visible to the outside. In contrast, some file 
systems use a directory with a visible tree structure, notably UNIX. In a search, the name (key) 
guides the search path; the name itself displays structure, in fact, it is a sequence of names 
(usually separated by slashes or periods). The first name is then searched in the root directory, 
whose descendants are not files but subdirectories. The process is repeated, until the last name 
in the sequence has been used (and hopefully denotes a file). 

Since the search path length in a tree increases with the logarithm of the number of elements, 
any subdivision of the tree inherently decreases performance since log(m + n) < log(m) + log (n) 
for any m, n > 1. It is justified only if there exist sets of elements with common properties. If these 
property values are stored once, namely in the subdirectory referencing all elements with 
common property values, instead of in every element, not only a gain in storage economy results, 
but possibly also in accesses which depend on those properties. The common properties are 
typically an owner's name, a password, and access rights (read or write protection), properties 
that primarily have significance in a multi-user environment. Since Oberon was conceived 
explicitly as a single-user system, there is little need for such facilities, and hence a flat directory 
offers the best performance with a simple implementation. 

Every directory operation starts with an access to the root page. An obvious measure for 
improving efficiency is to store the root page "permanently" in main store. We have chosen not to 
do this for four reasons: 

1. If the hardware fails, or if the computer is switched off before the root page is copied to disk, 
the file directory will be inconsistent with severe consequences. 

2. The root page has to be treated differently from other pages, making the program more 
complex. 

3. Directory accesses do not dominate the computing process; hence, any improvement would 
hardly be noticeable in overall system performance. The payoff for the added complexity would 
be small. 

4. Procedure Init is called upon system initialization in order to construct the sector reservation 
table. Therefore, this procedure (and the module) must be allowed to refer to the structure of a 
file's sector table(s), which is achieved by placing its definitions into the module FileDir (instead of 
Files). Unlike Enumerate, Init traverses the entire B-tree. The sector numbers of files delivered by 
TraverseDir are entered into a buffer. When full, the entries are sorted, whereafter each file's 
head sector is read and the sectors indicated in its sector table are marked as reserved. The 
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sorting speeds up the reading of the header sectors considerably. Nevertheless, the initialization 
of the sector reservation table clearly dominates the start-up time of the computer. For a file 
system with 10'000 files it takes in the order of 15s to record all files. 

7.5. The toolbox of file utilities 
We conclude this Chapter with a presentation of the commands which constitute the toolbox for 
file handling. These commands are contained in the tool module System, and they serve to copy, 
rename, and delete files, and to obtain excerpts of the file directory. 

Procedures CopyFiles, RenameFiles, and DeleteFiles all follow the same pattern. The parameter 
text is scanned for file names, and for each operation a corresponding procedure is called. If the 
parameter text contains an arrow, it is interpreted as a pointer to the most recent text selection 
which indicates the file name. In the cases of CopyFiles and RenameFiles which require two 
names for a single action, the names are separated by "=>" indicating the direction of the copy or 
rename actions. 

Procedure Directory serves to obtain excerpts of the file directory. It makes use of procedure 
FileDir.Enumerate. The parametric procedure List tests whether or not the delivered name 
matches the pattern specified by the parameter of the directory command. If it matches, the name 
is listed in the text of the viewer opened in the system track. Since the pattern may contain one or 
several asterisks (wild cards), the test consists of a sequence of searches of the pattern parts 
(separated by the asterisks) in the file name. In order to reduce the number of calls of List, 
Enumerate is called with the first part of the pattern as parameter prefix. Enumeration then starts 
with the least name having the specified prefix, and terminates as soon as all names with this 
prefix have been scanned. 

If the specified pattern is followed by an option directive "!", then not only file names are listed, but 
also the listed files' creation date and length. This requires that not only the directory sectors on 
the disk are traversed, but that additionally for each listed file its header sector must be read. The 
two procedures use the global variables pat and diroption. 
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8  Storage layout and management 

8.1.  Layout and run-time organization 
A crucial property of the Oberon System is centralized resource management. Its advantage is that 
replication of management algorithms and a premature partitioning of resources are avoided. The 
disadvantage is that management algorithms are fixed once and forever and remain the same for 
all applications. The success of a centralized resource management therefore depends crucially on 
its flexibility and its efficient implementation. This chapter presents the scheme and the algorithms 
governing main storage in the Oberon System. 

The storage layout of the Oberon System is determined by the structure of code and data typical in 
the use of modular, high-level programming languages, and in particular of the language Oberon. It 
suggests the subdivision of storage into three areas. 

1. The module space. Every module specifies procedures (code) and global (static) variables. Its 
initialization part can be regarded as a procedure implicitly called after loading. Upon loading, space 
must be allocated for code and data. Typically, modules contain very few or no global variables, 
hence the size of the allocated space is primarily determined by the code. The combined code and 
data space is called a block. Blocks are allocated in the module space by the loader. 

2. The workspace (stack). Execution of every command invokes a sequence of procedures, each of 
which uses (possibly zero) parameters and local variables. Since procedure calls and completions 
follow a strict first-in last-out order, the stack is the uniquely suited strategy for storage allocation for 
local data. Deallocation upon completion of a procedure is achieved by merely resetting the pointer 
identifying the top of the stack. Since this operation is performed by a single instruction, it costs 
virtually no time. Because Oberon is a single-process system, a single stack suffices. Furthermore, 
after completion of a command, the stack is empty. This fact will be important in simplifying the 
scheme for reclamation of dynamically allocated space. 

3. The dynamic space (heap). Apart from global (static) variables, and local (stack-allocated) 
variables, a program may refer to anonymous variables referenced through pointers. Such 
variables are allocated truly dynamically through calls of an explicit operation (NEW). These 
variables are allocated in the so-called heap. Their deallocation is "automatic", when free storage is 
needed and they are no longer referenced from any of the loaded modules. This process is called 
garbage collection. Every record allocated in the heap contains a (hidden) pointer to the descriptor 
of its type called the type tag. It is used by the garbage collector. 

Unfortunately, the number of distinct spaces is larger than two. If it were two, no arbitrary size 
limitation would be necessary; merely the sum of their sizes would be inherently limited by the size 
of the store. In the case of three spaces, arbitrarily determined size limits are unavoidable. Address-
mapping hardware can alleviate (and delegate) this problem using a virtual address space which is 
so large that limits will hardly ever be reached. 

Such a scheme is implemented by tables mapping virtual into physical addresses, requiring multiple 
memory accesses for every reference. Of course, the need for a double or a triple access for every 
memory reference is avoided by a translation cache in the (hardware) unit. Nevertheless, a 
decrease in performance is unavoidable for each cache miss. Furthermore, an additional subcycle 
is required for every access in order to look up the cached translation table. Without a virtual 
address scheme, each module block must consist of an integral number of physically adjacent 
pages. Holes generated by the release of modules must be reused. We employ the simple scheme 
of marking the released space as a hole, and of allocating a new block in the first hole encountered 
that is large enough (first-fit strategy). Considering the relative infrequency of module releases, 
efforts to improve the strategy are not worth the resulting added complexity. 

It is remarkable that the code for module allocation and release without virtual addressing is only 
marginally more complicated than with it. The only remaining advantages of an MMU are a better 
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storage utilization, because no holes occur (a negligible advantage), and that inadvertent 
references to unloaded modules, e.g. via installed procedures, lead to an invalid address trap. 

It is worth recalling that the concept of address mapping was introduced as a requirement for virtual 
memory implemented with disks as backing store, where pages could be moved into the 
background in order to obtain space for newly required pages, and could then be retrieved from 
disk on demand, i.e. when access was requested. This scheme is called demand paging. It is not 
used in the Oberon system, and one may fairly state that demand paging has lost its significance 
with the availability of large, primary stores. 

Experience in the use of the RISC predecessor Ceres leads to the conclusion that whereas address 
translation through an MMU was an essential feature for multi-user operating systems, it constitutes 
a dispensible overkill for single-user workstations. The fact that modern semiconductor technology 
made it possible to integrate the entire translation and caching scheme into a single chip, or even 
into the processor itself, led to the hiding (and ignoring) of the scheme's considerable complexity. 
Its side effects on execution speed are essentially unpredictable. This makes systems with MMU 
virtually unusable for applications with tight real-time constraints. The RISC processor does indeed 
not feature an address mapping unit. 

The RISC processor features 16 registers (of 32 bits). R0 - R11 are used for expression evaluation. 
R12 - R15 have fixed, system-wide usage: 

R12 address of the module table MT  (typically constant) 
R13 base address for variables in the current module SB (static base) 
R14 stack pointer SP 
R15 return address LNK (fixed by RISC's BL instruction) 

The used memory layout is shown in Figure 8.1. 

 
Figure 8.1  Storage layout 
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Such variables are anonymous and are referenced exclusively via pointers. The space in which 
they are allocated is called the heap. 

The space allocated to such dynamic variables becomes free and reusable as soon as the last 
reference to it vanishes. This event is hard, and in multiprocess systems even impossible to detect. 
The usual remedy is to ignore it and instead to determine the accessibility of all allocated variables 
(records, objects) only at the time when more storage space is needed. This process is then called 
garbage collection. 

The Oberon System does not provide an explicit deallocation procedure allowing the programmer 
to signal that a variable will no longer be referenced. The first reason for this omission is that 
usually a programmer would not know when to call for deallocation. And secondly, this "hint" could 
not be taken as trustworthy. An erroneous deallocation, i.e. one occurring when there still exist 
references to the object in question, could lead to a multiple allocation of the same space with 
disastrous consequences. Hence, it appears wise to fully rely on system management to determine 
which areas of the store are truly reusable. 

Before discussing the scheme for storage reclamation, which is the primary subject of dynamic 
storage management, we turn our attention to the problem of allocation, i.e. the implementation of 
procedure NEW. The simplest solution is to maintain a list of free blocks and to pick the first one 
large enough. This strategy leads to a relatively large fragmentation of space and produces many 
small elements, particularly in the first part of the list. We therefore employ a somewhat more 
refined scheme and maintain four lists of available space. Three of them contain pieces of fixed 
size, namely 32, 64, and 128 bytes. The fourth list contains pieces whose size is any multiple of 
256. We note that the choice of the values permits the merging of any two contiguous elements into 
an element of the next list. This scheme keeps fragmentation, i.e. the emergence of small pieces in 
large numbers, reasonably low with minimal effort. The body of procedure NEW consists of 
relatively few instructions, and typically only a small fraction of them needs to be executed. 

The statement NEW(p) is compiled into an instruction sequence assigning the address of pointer 
variable p to a fixed register (R0) and the type tag to another register (R1). The type tag is a pointer 
to a type descriptor containing information required by the garbage collector. This includes the size 
of the space occupied and now to be allocated. The effect of NEW is the assignment of the address 
of the allocated block to p, and the assignment of the tag to a prefix of the block. (see Fig. 8.2) 

 
Figure 8.2  Allocation of dynamic variable p^ in the heap by procedure NEW(p) 
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2. An assignment q := p decrements the reference count of q^ by 1, performs the assignment, 
then increments the reference count of p^ by 1. When a reference count reaches zero, the 
element is linked into the free list. 

There are two disadvantages inherent in this approach. The first is the non-negligible overhead in 
pointer assignments. The second is that circular data structures never become recognized as free, 
even if no external references point to their elements. 

The Oberon system employs the second scheme which involves no hidden operations like the 
reference counting scheme, but relies on a process initiated when free storage has become scarce 
and more is needed. It consists of two phases. In the first phase, all referenced and therefore still 
accessible elements are marked. In the second phase, their unmarked complement is released. 
The first phase is called the mark phase, the second the scan phase. Its primary disadvantage is 
that the process may be started at moments unpredictable to the system's user. During the 
process, the computer then appears to be blocked. It follows that an interactive system using mark-
scan garbage collection must guarantee that the process is sufficiently fast in order to be hardly 
noticeable. Modern processors make this possible, even with large main stores. Nevertheless, 
finding all accessible nodes in an entire computer system within, say, a second appears to be a 
formidable feat. 

We recognize that the mark phase essentially is a tree traversal, or rather a forest traversal. The 
roots of the trees are all named pointer variables in existence. We shall postpone the question of 
how these roots are to be found, and first present a quick tutorial about tree traversal. In general, 
nodes of the traversed structure may contain many pointers (branches). We shall, however, first 
restrict our attention to a binary tree, because the essential problem and its solution can be 
explained better in this way. 

The essential problem alluded to is that of storage utilization by the traversal algorithm itself. 
Typically, information about the nodes already visited must be retained, be it explicitly, or implicitly 
as in the case of use of recursion. Such a strategy is plainly unacceptable, because the amount of 
storage needed is unpredictable and may become very large, and because garbage collection is 
typically initiated just when more storage is unavailable. The task may seem impossible, yet a 
solution lies in the idea of inverting pointers along the path traversed, thus keeping the return path 
open. It is embodied in the following procedure, whose task is to traverse the tree given by the 
parameter root, and to mark every node. Mark values are assumed to be initially 0. Let the data 
structure be defined by the types 

Ptr = POINTER TO Node; 
Node = RECORD m: INTEGER;  L, R: Ptr END; 

and the algorithm by the procedure 
PROCEDURE traverse(root: Ptr); 
 VAR p, q, r; Ptr; 
BEGIN p := root; q := root; 
 REPEAT (* p # NIL *) INC(p.m); (*mark*) 
  IF p.L # NIL THEN (*pointer rotation*) 
   r := p.L; p.L :=  p.R; p.R := q; q := p; p := r 
  ELSE 
   p.L := p.R; p.R := q; q:= NIL 
  END 
 UNTIL p = q 
END traverse 

We note that only three local variables are required, independent of the size of the tree to be 
traversed. The third, r, is in fact merely an auxiliary variable to perform the rotation of values p.L, 
p.R, q, and p as shown in Fig. 8.3. A snapshot of a tree traversal is shown in Fig. 8.4. 
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.Figure 8.3  Rotation of four pointers 

 
Figure 8.4  Tree traversal (original at left, snapshot at right) 

The pair p, q  of pointers marks the position of the process. The algorithm traverses the tree in a left 
to right, depth first fashion. When it returns to the root, all nodes have been marked. 

How are these claims convincingly supported? The best way is by analyzing the algorithm at an 
arbitrary node. We start with the hypothesis H that, given the initial state P, the algorithm will reach 
state Q, (see Fig 8.5). 

State Q differs from P by the node and its descendants B and C having been marked, and by an 
exchange of p and q. We now apply the algorithm to state P, assuming that B and C are not empty. 
The process is illustrated in Fig 8.5. P0 stands for P in Fig. 8.4. 

 
Figure 8.5  Transition from state P to Q 

Transitions P0 → P1, P2 → P3, and P4 → P5 are the direct results of applying the pointer rotation 
as specified by the sequence of five assignments in the algorithm. Transitions P1 → P2 and P3 → 
P4 follow from the hypothesis H being applied to the states P1 and P3: subtrees are marked and p, 
q interchanged. We note in passing that the node is visited three times. Progress is recorded by the 
mark value which is incremented from 0 to 3. 

Fig. 8.6. demonstrates that, if H holds for steps P1 → P2 and P3 → P4, then it also holds for step 
P0 → P5, which visits the subtree p. Hence, it also holds for the step root → root, which traverses 
the entire tree. 
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Figure 8.6  Transitions from P0 to P5, visiting nodes 3 times 

This proof by recursion relies on the algorithm performing correct transitions also in the case of p.L 
being NIL, i.e. B being the empty tree. In this case, state P1 is skipped; the first transition is P0 → 
P2 (see Figure 8.7). 

If p.L is again NIL, i.e. also C is empty, the next transition is P2 → P4. This concludes the 
demonstration of the algorithm's correctness. 

 
Figure 8.7  Direct transition from P0 to P2, if p.L = NIL 
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 END 

In principle, the binary tree traversal algorithm might be adopted almost without change, merely 
extending the rotation of pointers from p.L, p.R, q, p to p.dsc[0], ... , p.dsc[n-1], q, p. However, this 
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would be an unnecessarily inefficient solution. The following is a more effective variant. Moreover, it 
caters for the case of inhomogeneous graphs, where different nodes have different numbers of 
descendants. The key lies in associating with every node, in addition to the tag, a second private 
field mk. It serves two purposes. The first is as a mark, with mk > 0 indicating that the node had 
been visited. The second is to store the address of the next descendant to be visited. The 
underlying data structure is shown in Figure 8.8. Type descriptors consist of the following fields: 

size in bytes, of the described record type, 
base a table of pointers to the descriptors of the base types (3 elements only) 
offsets of the descendant pointers in the described type (1 word each) 

 

 
Figure 8.8  Record and its type descriptor 

We note that the mark value, starting with zero (unmarked), is used as a counter of descendants 
already traversed, and hence as an index to the descendant field to be processed next. The 
algorithm can be applied not only to trees, but to arbitrary structures, including circular ones, if the 
continuation condition p # 0 (actually p >= heapOrg) is extended to (p >= heapOrg) & (offadr = 0). 
This causes a descendant that is already marked to be skipped. Here the array M stands for the 
entire memory. 

PROCEDURE traverse(root: Ptr); 
 VAR offadr, offset: INTEGER; p, q, r: Ptr; 
BEGIN p := root; q := root; 
 REPEAT (* p # NIL*) offadr := p.mk; (*mark*) 
  IF offadr = 0 THEN tag := p.tg; offadr := tag + 16 ELSE INC(offadr, 4) END ; 
  p. mk := offadr; offset := M[offadr]; 
  IF offset # -1 THEN  (*move down*) 
   r := M[p+offset]; offadr := M[r-4];; 
   IF offadr = 0 THEN M[p+offset] := q; q := p; p := r END 
  ELSE (*move up*) 
   offadr := M[q-4];offset := M[offadr]  
   IF p # q THEN r := M[q+offset]; M[q+offset] := p; p := q; q := r END 
  END 
 UNTIL (p = q) & (offset = -1) 
END traverse; 

The mark is included in each record's hidden prefix. The prefix takes 2 words only; the first is  used 
for the tag. The other is reserved for the garbage collector and used as mark and offset address. 
The end of the list of descendant pointers is marked by an entry with value -1. And finally, 
assignments involving M are expressed as 
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The scan phase is performed by a relatively straight-forward algorithm. The heap, i.e. the storage 
area between HeapOrg and HeapLimit (the latter is a variable), is scanned element by element, 
starting at HeapOrg. Elements marked are unmarked, and unmarked elements are freed by linking 
them into the appropriate list of available space. 

As the heap may always contain free elements, the scan phase must be able to recognize them in 
order to skip them or merge them with an adjacent free element. For this purpose, the free 
elements are also considered as prefixed. The prefix serves to determine the element's size and to 
recognize it as free due to a special (negative) mark value. The encountered mark values and the 
action to be taken are: 

mk value state action  

= 0 unmarked collect, mark free 
> 0 marked unmark 
< 0 free skip or merge 

8.3. The Kernel 
The kernel lies at the bottom of the module hierarchy. It contains the procedures for dynamic 
storage allocation and retrieval as described before. The procedures are New, Mark, and Scan. 

Kernel also contains the driver routines for the disk. They are used by modules FileDir and Files. 
The "disk" is actually an SD-card, a high-volume flash-RAM. It is accessed purely sequentially, 
byte-wise, by a standard, serial peripheral interface (SPI). Within Kernel a table called SectorMap is 
allocated keeping track of blocks (sectors) occupied by files. A single bit indicates, whether a sector 
is allocated or not. This table is accessed by the procedures AllocSector, MarkSector, and 
FreeSector. Reading and writing is done sector-wise by procedures GetSector and PutSector. 
Sector numbers are always a multiple of 29 for the purpose of redundancy checks. 

Furthermore, the kernel contains a timer counting milliseconds and, perhaps, a real time clock, 
showing date and time. Clock data are packed into a single word as follows: 

 
Figure 8.9  Encoding of date and time  (year starting with 2000) 

DEFINITION Kernel;  (*NW/PR  11.4.86 / 27.12.95 / 15.5.2013*) 
 CONST SectorLength = 1024; 
 TYPE Sector = ARRAY SectorLength OF BYTE; 
 VAR allocated, NofSectors: INTEGER; 
  heapOrg, heapLim: INTEGER;  
  stackOrg, MemSize: INTEGER; 
 PROCEDURE New(VAR ptr: INTEGER; tag: INTEGER); 
 PROCEDURE Mark(pref: INTEGER); 
 PROCEDURE Scan; 
 PROCEDURE ResetDisk; 
 PROCEDURE MarkSector(sec: INTEGER); 
 PROCEDURE FreeSector(sec: INTEGER); 
 PROCEDURE AllocSector(hint: INTEGER; VAR sec: INTEGER); 
 PROCEDURE GetSector(src: INTEGER; VAR dest: Sector); 
 PROCEDURE PutSector(dest: INTEGER; VAR src: Sector); 
 PROCEDURE Time(): INTEGER; (*milliseconds*) 
 PROCEDURE Clock(): INTEGER; 
 PROCEDURE SetClock(dt: INTEGER); 
 PROCEDURE Install(adr, procadr: INTEGER); 
 PROCEDURE Init; 
END Kernel. 
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8.4. The storage management's toolbox 
The user can obtain information about the system's state and resources through its toolbox, a set of 
commands contained in the too module System. These commands are: 
 PROCEDURE Watch; 
 PROCEDURE Collect;  / n 
 PROCEDURE SetClock;   / year, month, day, hour, minute, second 

Command Watch shows the amount of storage occupied in the heap, the number of disk sectors 
allocated on the disk, and the number of tasks installed. The command Collect allows to control the 
frequency of garbage collections. The number n indicates how many commands are executed 
before the next garbage collection. 
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9  Device drivers 

9.1. Overview 
Device drivers are collections of procedures that constitute the immediate interface between 
hardware and software. They refer to those parts of the computer hardware that are usually called 
peripheral. Computers typically contain a system bus which transmits data among its different parts. 
Processor and memory are considered as its internal parts; the remaining parts, such as disk, 
keyboard, display, etc, are considered as external or peripheral, notwithstanding the fact that they 
are often contained in the same cabinet or board. 

Such peripheral devices are connected to the system bus via special registers (data buffers) and 
transceivers (switches, buffers in the sense of digital electronics). These registers and transceivers 
are addressed by the processor in the same way as memory locations - they are said to be 
memory-mapped - and they constitute the hardware interface between processor bus and device. 
References to them are typically confined to specific driver procedures which constitute the 
software interface. 

Drivers are inherently hardware specific, and the justification of their existence is precisely that they 
encapsulate these specifics and present to their clients an appropriate abstraction of the device. 
Evidently, this abstraction must still reflect the essential characteristics of the device, but not the 
details (such as e.g. the addresses of its interface registers). 

Our justification to present the drivers connecting the Oberon system with the RISC computer in 
detail is on the one hand the desire for completeness. But on the other hand it is also in recognition 
of the fact that their design represents an essential part of the engineering task in building a 
system. This part may look trivial from a conceptual point of view; it certainly is not so in practice. 

In order to reduce the number of interface types, standards have been established. The RISC 
computer also uses such interface standards, and we will concentrate on them in the following 
presentations. The following devices are presented: 

1. The Keyboard is considered as a serial device delivering one byte of input data per key stroke. It 
is connected by a serial line according to the PS/2 and ASCII (American Standard Code for 
Information Interchange) standards. The software is contained in module Input (Sect. 9.2), and the 
hardware is explained in Sect. 17.2.1. 

2. The Mouse is a pointing device delivering coordinates in addition to key states. The software is 
also part of module Input (Sect. 9.2). 

3. Display. The interface to the display is an area of memory that contains the displayed 
information, exactly one bit per pixel for a monochrome display. This area is called frame buffer or 
bitmap Here the size is of the display area is 768 lines and 1024 dots per line, representing a 
raster. The software is module Display, which primarily consists of operations to draw frequently 
occurring patterns. These operations are called raster-ops. They are explained in Section 4.5. The 
actual display requires a hardware interface called a display controller. The connection between the 
controller and the display follows the VGA-Standard (see Sect. 17.2.4). 

4. Disk. Our RISC computer does not use a magnetic, rotating disk for storing non-volatile data. 
Instead, it uses an SD-card (flash-RAM). The driver is contained in module Kernel (Section 8.3). 
The hardware is discussed in Sect. 17.2.2. 

5. Net. In the original text, a network was presented consisting of a bus connecting many 
computers, based on the RS-485 standard. It was implemented by the serial communications 
controller Zilog 8530, operating at a frequency of 230 Kb/s. The name SCC has been retained as a 
generic interface, behind which the packet transport has now been re-implemented as a simple 
wireless network (Nordic nRF24L01 controller) in the regulation-free 2.4GHz 
industrial/scientific/medical (ISM) frequency band. 
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In all driver modules the implementation-dependent procedures SYSTEM.PUT, SYSTEM.GET, and 
SYSTEM.BIT are used to access the registers of the device interface. Their first parameter is the 
address of the register, the second an expression or variable. 

9.2. Keyboard and mouse 
The driver procedures for the keyboard and the mouse are located in module Input. Available() 
signals that a character has been typed on the keyboard, if its value is greater than 0. The 
character is read by calling Read(ch). Module Input is restricting the data to the ASCII character set 
Latin-1, i.e. the values lie in the range 0X <= ch < 80X (7-bit values). Mouse(k, x, y) yields the 
current state of the mouse keys and the mouse's coordinates. 

MODULE Input; 
 PROCEDURE Available(): INTEGER; 
 PROCEDURE Read(VAR ch: CHAR); 
 PROCEDURE Mouse(VAR keys: SET; VAR x, y: INTEGER); 
 PROCEDURE SetMouseLimits(w, h: INTEGER); 
 PROCEDURE Init; 
END Input. 

The driver software accesses the keyboard via the Standard PS/2 interface represented by an 8-bit 
register for the received data kbdCode, and a single-bit flag indicating whether a byte had been 
received. 

The keyboard codes received from the keyboard via a PS/2 line are not identical with the character 
values delivered to the Read procedure. A conversion is necessary. This is so, because modern 
keyboards treat all keys in the same way, including the ones for upper case, control, alternative, 
etc. Separate codes are sent to signal the pushing down and the release of a key, followed by 
another code identifying which key had been pressed or released. This requires, besides a 
translation table from codes to characters, a set of state variables. They are the global, Boolean 
variables Recd, Up, Shift, Ctrl, and Ext. Procedure Peek determines whether an actual character is 
present, or merely a code signalling a key shift. Peek controls the state. 

Procedure Mouse fetches a word from the mouse interface register and decomposes it into its 
components (key state and coordinates). (kb is the bit indicating whether a code had been received 
from the keyboard). 

 
Fig. 9.1  Format of the mouse register 

9.3. The SD-card (disk) 
SD-card are high-volume memory devices based on flash-store technology. They are typically 
organized as individually accessible blocks of 1K bytes. The driver for the SD-card is contained in 
module Kernel, which also handles allocation and reservation of blocks, here in analogy to rotating 
disks still called sectors. 

TYPE Sector = ARRAY SectorLength OF BYTE; 
PROCEDURE GetSector(src: INTEGER; VAR dst: Sector); 
PROCEDURE PutSector(dst: INTEGER; VAR src: Sector); 
PROCEDURE AllocSector(hint: INTEGER; VAR sec: INTEGER); 
PROCEDURE MarkSector(sec: INTEGER); 
PROCEDURE FreeSector(sec: INTEGER); 
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Data transfer is sequebtial and handled by procedures ReadSD and WriteSD by issuing 
commands. These are for transmitting a block address, for receiving, and for sending a block of 
data. Synchronous transmission of sequences of words follows the SPI standard, which uses 3 
lines, one for data input, one for dats output, and one for the clock (see also Section 17.2.2). The 
hardware interface contains a 32-bit register. The bit-rate is 8.3 MB/s.  

9.4. Serial asynchronous interface (RS 232) 
The RS-232 standard serves to transmit sequences of bytes over a data line asynchronously. This 
implies that there is no separate clock line (see also Section 17.2.3). The hardware interface 
contains a 10-bit register for the transmitter and one for the receiver. The data rate used here is 
19200 bit/s. A byte is sent and received over the line by the following programs. 

CONST data = -56; stat = -52;  (*device register addresses*) 
 
PROCEDURE Send(x: BYTE); 
BEGIN 
 REPEAT UNTIL SYSTEM.BIT(stat, 1); 
 SYSTEM.PUT(data, x) 
END Send; 

PROCEDURE Rec(VAR x: BYTE); 
BEGIN 
 REPEAT UNTIL SYSTEM.BIT(stat, 0); 
 SYSTEM.GET(data, x) 
END Rec; 

These procedures are used in  the driver module RS232 presented in Section 15.2. This module 
itself is not used in the Oberon core, but it was instrumental in building the System on a host 
computer and downloading it. It is characterized by a very simple interface. 

9.5. Serial communications controller (SCC) 
The interface of the driver for the network was taken over from the original design using a serial 
communocations controller Zilog 8530. The implementation changed totally. It was designed by 
Paul Reed for  the wireless controller Nordic nRF24L01. 

DEFINITION SCC; 

 TYPE Header = 
  RECORD valid: BOOLEAN; dadr, sadr, typ: BYTE; 
   len: INTEGER; (*of data following header*) 
  END ; 

 PROCEDURE Start(filter: BOOLEAN); 
 PROCEDURE Send(VAR head: Header; buf: ARRAY OF BYTE); 
 PROCEDURE Available(): INTEGER; 
 PROCEDURE ReceiveHead(VAR head: Header); 
 PROCEDURE Receive(VAR x: BYTE); 
 PROCEDURE Skip(m: INTEGER); 
 PROCEDURE Stop; 

END SCC. 
 
 


