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16  Implementation of the RISC processor 

16.1. Introduction 
The design of the processor to be described here in detail was guided by two intentions. The first 
was to present an architecture that is distinct in its regularity, minimal in the number of features, yet 
complete and realistic. It should be ideal to present and explain the main principles of processors. 
In particular, it should connect the subjects of architectural and compiler design, of hardware and 
software, which are so closely interconnected. 

Clearly “real”, commercial processors are far more complex than the one presented here. We 
concentrate on the fundamental concepts rather than on their elaboration. We strive for a fair 
degree of completeness of facilities, but refrain from their “optimization”. In fact, the dominant part 
of the vast size and complexity of modern processors and software is due to speed-up called 
optimization. It is the main culprit in obfuscating the basic principles, making them hard, if not 
impossible to study. In this light, the choice of a RISC (Reduced Instruction Set Computer) is 
obvious. 

The use of an FPGA provides a substantial amount of freedom for design. Yet, the hardware 
designer must be much more aware of availability of resources and of limitations than the software 
developer. Also, timing is a concern that usually does not occur in software, but pops up 
unavoidably in circuit design. Nowadays circuits are no longer described in terms of elaborate 
diagrams, but rather as a formal text. This lets circuit and program design appear quite similar. The 
circuit description language – we here use Verilog – appears almost the same as a programming 
language. But one must be aware that differences still exist, the main one being that in software we 
create mostly sequential processes, whereas in hardware everything “runs” concurrently. However, 
the presence of a language – a textual definition – is an enormous advantage over graphical 
schemata. Even more so are systems (tools) that compile such texts into circuits, taking over the 
arduous task of placing components and connecting them (routing). This holds in particular for 
FPGAs, where components and wires connecting them are limited, and routing is a very difficult 
and time-consuming matter. 

The development of this RISC progressed through several stages. The first was the design of the 
architecture itself, (more or less) independent of subsequent implementation considerations. Then 
followed a first implementation called RISC-0. For this a Harvard Architecture was chosen, implying 
that two distinct memories are used for program and for data. For both chip-internal block RAMs 
were used. The Harvard architecture allows for a neat separation of the arithmetic from the control 
unit. 

But these blocks of RAM are relatively small on the used Spartan-3 development board (1 - 4K 
words). This board, however, provides also an FPGA-external static RAM with a capacity of 1 
MByte. In a second effort, the BRAM for data was replaced by this SRAM. Both instructions and 
data are placed into the SRAM, resulting in a von Neumann architecture. 

The RISC hardware is characterized by three interfaces. The first is the programmer's interface, the 
architecture, that is, those aspects that are relevant to the programmer, in particular, the instruction 
set. It is described in Appendix A2. The second is the hardware interface between the processor 
core and its environment, described here. The third is that which connects the environment with 
physical devices such as memory, keyboard and display. This is described in Chapter 17. 

module RISC5( 
input clk, rst, stallX, 
input [31:0] inbus, codebus, 
output [19:0] adr, // memory and device addresses 
output rd, wr, ben, // read, write,  byte enable control signals for memory 
output [31:0] outbus); 
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The main parts of the hardware interface are three busses, the data input and output busses, the 
code bus, and the address bus. Signals rd and wr indicate, whether a read or a write operation is to 
be performed. ben indicates a byte (rather than word) access. The entire processor operates 
synchronously on the clock clk (25 MHz on Spartan-3), rst is the reset signal (from a push button on 
the development board), and stall is the input to stall the processor. 

 
Figure 16.1  The processor's interface 

First we concentrate on the implementation of the processor core, its realization in the form of 
circuits. They are divided into two parts, the arithmetic/logic unit processing data, and the control 
unit determining the flow of instructions. 

16.2. The arithmetic and logic unit 
The ALU features a bank of 16 registers with 32 bit words. Arithmetic and logical operations, 
represented by instructions, always operate on these registers. Data can be transferred between 
memory and registers by separate load and store instructions. This is an important characteristic of 
RISC architectures, developed between 1975 and 1985. It contrasts with the earlier CISC 
architectures (Complex instruction set): Memory is largely decoupled from the processor. A second 
important characteristic is that most instructions take a single clock cycle (25 MHz) for their 
execution. The exceptions are access to memory, multiplication and division.. More about this will be 
presented later. This single-cycle rule makes such processors predictable in performance. The 
number of cycles and the time required for executing any instruction sequence is precisely defined. 
Predictability is essential in all real-time applications. 

The data processing unit consisting of ALU and registers is shown in Figure 16.2. Evidently, data 
cycle from registers through the ALU, where an operation is performed, and the result is deposited 
back into a register. The ALU embodies the circuits for arithmetic operations, logical operations, 
and shifts. The operations available are listed below. They are described in more detail in 
Appendix A2. The operand n is either a register or a part of the instruction itself. 

0 MOV a, n R.a := n 
1 LSL a, b, n R.a := R.b ←  n (shift left by n bits) 
2 ASR a, b, n R.a := R.b → n (shift right by n bits with sign extension) 
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits) 
4 AND a, b, n R.a := R.b & n logical operations 
5 ANN a, b, n R.a := R.b & ~n 
6 IOR a, b, n R.a := R.b or n inclusive or 
7 XOR a, b, n R.a := R.b xor n exclusive or 
8 ADD a, b, n R.a := R.b + n integer arithmetic 
9 SUB a, b, n R.a := R.b – n 
10 MUL a, b, n R.a := R.b х n 
11 DIV a, b, n R.a := R.b div n 
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12 FAD a, b, c R.a := R.b + R.c floating-point arithmetic 
13 FSB a, b, c R.a := R.b – R.c 
14 FML a, b, c R.a := R.b х R.c 
15 FDV a, b, c R.a := R.b / R.c 

The following excerpt describes the essence of the ALU circuits. It is written in the HDL Verilog 
and refers to the following wires and registers. 

wire [31:0] IR; 
wire p, q, u, v, w; // instruction fields IR[31], IR[30], IR[29], IR[28], IR[16] 
wire [3:0] op, ira, irb, irc; // instruction fields IR[19:16], IR[27:24], IR[23:20], IR[3:0] 
wire [15:0] imm; // instruction field IR[15:0] 

wire [31:0] A, B, C0, C1, regmux; 
wire [31:0]  s3, t3, quotient, fsum, fprod, fquot; 
wire [32:0] aluRes; 
wire [63:0] product; 

reg [31:0] R [0:15]; // array of 16 registers 
reg  N, Z, C, OV; // condition flags 

 

 
Fig. 16.2. Processor core with ALU and registers 

B and C0 are the outputs from the register bank, and A is its input. The register numbers ira for port 
A, irb for port B, and irc for port C0 are taken from 4-bit fields of the instruction register IR. C1 is the 
multiplexer selecting among the register output C0 and the immediate field imm. s3 and t3 are 
outputs of the shift units (Sect. 16.2.1). product is the output of the multiplier (16.2.2), quotient and 
remainder those of the divider (16.2.3), fsum that of the floating-point adder (16.2.4), fprod that of the 
floating-point multiplier (16.2.5), and fquot the output of the floating-point divider (16.2.6). 

assign A = R[ira]; 
assign B = R[irb]; 
assign C0 = R[irc]; 
assign C1 = q ? {{16{v}}, imm} : C0; 

The following represents the main instruction decoding and selection of results. The opcodes refer to 
specific values of fields p and op of IR. Note that if x then y else z is denoted in Verilog by x ? y : z. 

assign aluRes = 
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  MOV ? (q ? (~u ? {{16{v}}, imm} : {imm, 16'b0}) : 
     (~u ? C0 : (~irc[0] ? H : {N, Z, C, OV, 20'b0, 8'b01010000}))) : 
  LSL ? t3 : // output of left shift unit 
  (ASR|ROR) ? s3 : // output of right shift unit 
  AND ? B & C1 : 
  ANN ? B & ~C1 : 
  IOR  ? B | C1 : 
  XOR ? B ^ C1 : 
  ADD ? B + C1 + (u & C) : 
  SUB ? B - C1 - (u & C) : 
  MUL ? product [31:0] : // output of multiplier 
  DIV ? quotient : 
  (FAD|FSB) ? fsum : 
  FML ? fprod : 
  FDV ? fquot : 0; 

The input to the register bank, regmux, is selected from either alures, inbus (for LDR instructions), 
or the program address nxpc (for branch and link instructions). The signal regwr determines, 
whether data are to be stored (written) into the register bank. Details must be gathered from the 
respective program listing RISC.v. 

always @ (posedge clk) begin 
 R[ira] <= regwr ? regmux : A; 
 N <= regwr ? regmux[31] :  N; 
 Z <= regwr ? (regmux == 0) : Z; 
    C <= (ADD|SUB) ? aluRes[32] : C; 
 OV <= (ADD|SUB) ? aluRes[32] ^ aluRed[31] : OV ; 
end 

Whenever a register is written, the condition flags are also affected. They are N (aluRes negative), 
Z (aluRes zero), C (carry), and OV (overflow). The latter apply only to addition and subtraction. 

16.2.1 Shifters 

Shifters are multi-way multiplexers. For a 32-bit word, the simplest solution would be 32 32-way 
multiplexers. But this is hardly economical. On the FPGA used here, 4-way muxes are basic cells. 
It is therefore beneficial, to compose a shifter out of 4-way muxes. Now the obvious solution is to 
use 3 levels of muxes through which data flow. The first level shifts by amounts of 0, 1, 2, or 3, the 
second by amounts of 0, 4, 8, 12, and the third by 0 or 16. This scheme is programmed as follows 
for left shifts (instruction LSL) with B as input, sc0 = C1[1:0] and sc1 = C1[3:2] as shift counts, and 
t3 as output: 

assign t1 = (sc0 == 3) ? {B[28:0], 3'b0} : 
 (sc0 == 2) ? {B[29:0], 2'b0} : 
 (sc0 == 1) ? {B[30:0], 1'b0} : B; 
assign t2 = (sc1 == 3) ? {t1[19:0], 12'b0} : 
 (sc1 == 2) ? {t1[23:0], 8'b0} : 
 (sc1 == 1) ? {t1[27:0], 4'b0} : t1; 
assign t3 = C1[4] ? {t2[15:0], 16'b0} : t2; 

The solution for right shifts is analogous. An additional level of multiplexing is required, shifting in 
either the sign bit (ASR with sign propagation) or bits from the low end of the word (ROR), making 
a barrel shifter. This selection is controlled by the instruction bit w = IR[16]. 

16.2.2. Multiplication 

Multiplication is an inherently more complex operation than addition and subtraction. After all, 
multiplication can be composed (of a sequence) of additions. There are many methods to 
implement multiplication, all – of course – based on the same concept of a series of additions. 
They show the fundamental problem of trade-off between time and space (circuitry). Some 
solutions operate with a minimum of circuitry, namely a single adder used for all 32 additions 
executed sequentially (in time). They obviously sacrifice speed. The other extreme is multiplication 
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in a single cycle, using 32 adders in series (in space). This solution is fast, but the amount of 
required circuitry is high.. 

Before we present the sequential solution, let us briefly recapitulate the basics of a multiplication p 
:= x × y. Here p is the product, x the multiplier, and y the multiplicand. Let x and y be unsigned 
integers. Consider x in binary form. 

x  =  x31×231  +  x30×230  + … +  x1×21  +  x0×20 

Evidently, the product is the sum of 32 terms of the form xk×2k×y, i.e. of y left shifted by k positions 
multiplied by xk. Since xk is either 0 or 1, the product is either 0 or y (shifted). Multiplication is thus 
performed by an adder and a selector. The selector is controlled by xk, a bit of the multiplier. 
Instead of selecting this bit among x0 … x31, we right shift x by one bit in each step. Then the 
selection is always according to x0. The add-shift step then is  

IF ODD(x) THEN p := p + y END ; 
y := 2*y; x := x DIV 2 

whereby multiplication by 2 is done by a left shift, and division by 2 by a right shift: As an example, 
consider the multiplication of two 4-bit integers x = 5 and y = 3, requiring 4 steps: 

 p x y  

 0000'0000 0101 0000'0011 
add y to p 0000'0011 0101 0000'0011 
shift 0000'0011 0010 0000'0110 
add 0 to p 0000'0011 0010 0000'0110 
shift 0000'0011 0001 0000'1100 
add y to p 0000'1111 0001 0000'1100 
shift 0000'1111 0000 0001'1000 
add 0 to p 0000'1111 0000 0001'1000 
shift 0000'1111 0000 0011'0000 p = 15 

The shifting of x to the right also suggests that instead of shifting y to the left in each step, we 
keep y in the same position and shift the partial sum p to the right. We notice that the size of x 
decreases by 1 in each step, whereas the size of p increases by 1. This allows to pack p and x 
into a single double register <B, A> with a shifting border line. At the end, it contains the product p 
= x × y. 

 p x  

 0000 0101 
add y to p 0011 0101 
shift 00011   010 
add 0 to p 00011   010 
shift 000011     01 
add y to p 001111     01 
shift 0001111        0 
add 0 to p 0001111       0 
shift 00001111         p = 15 

p = {B[31:0], A{31:[32-k]}, x = A[31-k:0] k = 0 … 31 

The multiplier is controlled by a rudimentary state machine S, actually a simple 5-bit counter 
running from 0 to 31. The multiplier is shown schematically in Figure 16.3. 

The multiplier interprets its operands as signed (u = 0) or unsigned (u = 1) integers. The difference 
between unsigned and signed representation is that in the former case the first term has a 
negative weight (-x31×231). Therefore, implementation of signed multiplication requires very little 
change: Term 31 is subtracted instead of added (see complete program listing below). 
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Figure 16.3. Schematic of multiplier 

During execution of the 32 add-shift steps the processor must be stalled. The process proceeds 
and the counter S advances as long as the input MUL is active (high). MUL indicates that the 
current operation is a multiplication, and the signal is stable until the processor advances to the 
next instruction. This happens when step 31 is reached (Figure 16.4). 

stall  =  MUL & ~(S == 31); 
S  <=  MUL ? S+1 : 0; 

 
Figure 16.4. Generating stall 

The details of the simple multiplier are listed below: 
module Multiplier( 
  input CLK, MUL, u, 
  output stall, 
  input [31:0] x, y, 
  output [63:0] z); 
 
reg [4:0] S;    // state 
reg [31:0] B2, A2;  // high and low parts of partial product 
wire [32:0] B0, B00, B01; 
wire [31:0] B1, A0, A1; 
 
assign stall = MUL & ~(S == 31); 
assign B00 = (S == 0) ? 0 : {B2[31] & u, B2}; 
assign B01 = A0[0] ? {y[31] & u, y} : 0; 
assign B0 = ((S == 31) & u) ? B00 - B01 : B00 + B01; 
assign B1 = B0[32:1]; 
assign A0 = (S == 0) ? x : A2; 
assign A1 = {B0[0], A0[31:1]}; 
assign z = {B1, A1}; 
 
always @ (posedge(CLK)) begin 
  B2 <= B1; A2 <= A1; 
  S <= MUL ? S+1 : 0; 
end 
endmodule 
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Implementing multiplication in hardware made the operation about 30 times faster than its solution 
by software. A significant factor! As multiplication is a relatively rare operation – at least in 
comparison with addition and subtraction – early RISC designs (MIPS, SPARC, ARM) refrained 
from its full implementation in hardware. Instead, an instruction called multiply step was provided, 
performing a single add-shift step in one clock cycle. A multiplication was then programmed by a 
sequence of 32 step instructions, typically provided as a subroutine. This measure of economy 
was abandoned, when hardware became faster and cheaper. 

The FPGA used on the Spartan-3 board features a welcome facility for speeding up multiplication, 
namely fast 18 x 18 bit multiplier units. These are made available as basic cells of the FPGA, and 
they multiply in a single clock cycle. Considering an operand x =  x1×216 + x0, the product is 
obtained as the sum of only 4 terms: 

p  =  x × y  =  x1×y1×232 + (x0×y1 + x1×y0)×216 + x0×y0 

Thereby multiplication of two 32-bit integers can be performed in 2 cycles only, one for 
multiplications, one for addition. Four multipliers are needed. For details, the reader is referred to 
the program listing (module Multiplier1). 

16.2.3. Division 

Division is similar to multiplication in structure, but slightly more complicated. We present its 
implementation by a sequence of 32 shift-subtract steps, the complement of add-shift. We here 
discuss division of unsigned integers only. 

q  =  x DIV y r  =  x MOD y 

q is the quotient, r the remainder. These are defined by the invariants 

x  =  q×y + r with 0 ≤ r < y 

Both q and r are held in registers. Initially we set r to x, the dividend, and then subtract multiples 
of y (the divisor) from it, each time checking that the result is not negative. This shift-subtract step 
is 

r := 2*r; q := 2*q; 
IF r – y ≥ 0 THEN r := r – y END 

As an example, consider the division of the 8-bit integer x = 14 by the 4-bit integer y = 4, where 
multiplication and division by 2 are done by shifts: 

 r q y  

 0000'1110 0000 0001'1000 
shift 0000'1110 0000 0001'1000 r < y 
sub 0 from r 0000'1110 0000 0000'1100 
shift 0000'1110 0000 0000'1100 r >= y 
sub y from r 0000'0010 0001 0000'1100 
shift 0000'0010 0010 0000'0110 r < y 
sub 0 from r 0000'0010 0010 0000'0110 
shift 0000'0010 0100 0000'0011 r < y 
sub y from r 0000'0010 0100 0000'0011 q = 4, r = 2 

As with multiplication this arrangement may be simplified by putting r and q into a double-length 
shift register, and by shifting r to the left instead of y to the right. This results in 

 r q  

 0000'1110 
shift 0001'110       0  r < Y 
sub 0 from r 0001'110       0 
shift 0011'10     00  r >= Y 
sub y from r 0000'10     01  
shift 0001'0   010  r < Y 
sub 0 from r 0001'0   010  
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shift 0010 0100  r < Y 
sub 0 from r 0010 0100  q = 4, r = 2 

This scheme is represented by the circuit shown in Figure 16.5. 

 
Figure 16.5. Schematic of divider 

Stall generation is the same as for the multiplier. A division takes 32 clock cycles. Further details 
are shown in the subsequent program listing. 

module Divider( 
  input clk, DIV, 
  output stall, 
  input [31:0] x, y, 
  output [31:0] quot, rem); 

reg [4:0] S;  // state 
reg [31:0] r3, q2; 
wire [31:0] r0, r1, r2, q0, q1, d; 

assign stall = DIV & ~(S == 31); 
assign r0 = (S == 0) ? 0 : r3; 
assign d = r1 - y; 
assign r1 = {r0[30:0], q0[31]}; 
assign r2 = d[31] ? r1 : d; 
assign q0 = (S == 0) ? x : q2; 
assign q1 = {q0[30:0], ~d[31]}; 
assign rem = r2; 
assign quot = q1; 

always @ (posedge(clk)) begin 
  r3 <= r2; q2 <= q1; 
  S <= DIV ? S+1 : 0; 
end 
endmodule 

16.3. Floating-point arithmetic 
The RISC uses the IEEE Standard for representing REAL (floating-point) numbers with 32 bits. 
The word is divided into 3 fields: s for the sign, e for the exponent, and m for the mantissa. The 
value is   

x  =  (-1)s × 2e-127 × 1.m  with  1.0 ≤ m < 2.0  (normalized form) 

Numbers are represented in sign-magnitude form. This implies that for sign inversion only the sign 
bit must be inverted, and exponent and mantissa remain unchanged. 

Zero is a special case represented by 32 0-bits, and therefore has to be treated separately. 
Furthermore, e = 255 denotes "not a number". It is generated in the case of arithmetic overflow. 
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Figure 16.6  IEEE standard floating-point representation of REAL numbers 

16.3.1. Floating-point addition 

If two numbers are to be added, they must have the same exponent. This implies that the 
summand with the smaller exponent must be denormalized. m is shifted to the right and e is 
incremented accordingly. That is, if d is the difference of the two exponents, m is multiplied by 2d, 
and e is incremented by d. After the addition, the sum must be rounded and post-normalized. m is 
shifted to the left and e is decremented accordingly. The shift amount is determined by the 
position of the leftmost one-bit. This results in the scheme shown in Figure 16.7, and the module's 
interface is 

module FPAdder( 
  input clk, run, u, v, 
  input [31:0] x, y, 
  output stall, 
  output [31:0] z); 

 

 

Figure 16.7  Steps of floating-point addition 
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It is important to achieve proper rounding. This is done by extending the mantissa of both 
operands by a guard bit, initialized to 0. A one is added (effectively 0.5) and at the end the guard 
bit is discarded. 

The two predefined conversion functions FLT and FLOOR are conveniently implemented as 
additions. A denormalized 0 is added to the argument, effecting the proper shift. In the case of 
FLT (modifier bit u = 1), denormalization is omitted (no 1-bit inserted), and in the case of FLOOR 
(modifier bit v = 1), post-normalization is suppressed. 

16.3.2. Floating-point multiplication 

A product is given by the equation 

p  =  x × y  =  (2xe × xm) × (2ye × ym)  =  2xe+ye × (xm * ym) 

p  =  (xs, xe, xm) × (ys, ye, ym)  =  (xs xor ys, xe + ye, xm × ym) 

That is, exponents are added, mantissas multiplied. Denormalization is not needed. Post-
normalization is a right shift of at most one bit, because if  1.0 ≤ xm, ym < 2.0, the result satisfies 
1.0 ≤ xm*ym < 4.0. The sign of the product is the exclusive or of the signs of the arguments. The 
multiplier module's interface is 

module FPMultiplier( 
  input clk, run, 
  input [31:0] x, y, 
  output stall, 
  output [31:0] z); 

16.3.3. Floating-point division 

A quotient is given by the equation 

q  =  x / y  =  (2xe × xm) / (2ye × ym)  =  2xe-ye × (xm / ym) 

q  =  (sx, ex, mx) / (sy, ey, my)  =  (sx xor sy, ex - ey, mx / my) 

That is, exponents are subtracted, mantissas divided. Denormalization is not needed. Post-
normalization requires a left shift by at most a single bit, because if  1.0 ≤ xm, ym < 2.0, the result 
satisfies 0.5 ≤ xm/ym < 2.0. The sign of the product is the exclusive or of the signs of the 
arguments. The divider module's interfaces is 

module FPDivider( 
    input clk, run, 
    input [31:0] x, y, 
    output stall, 
    output [31:0] z); 

16.4. The Control Unit 
The control unit determines the sequence of executed instructions. It contains two registers, the 
program counter PC holding the address of the current instruction, and the current instruction 
register IR holding the instruction currently being interpreted. Instructions are obtained from 
memory through the codebus (see interface), from where the decoding signals emanate. Mostly, 
the arithmetic unit and the control unit operate concurrently (in parallel). While the arithmetic unit 
performs the operation held in register IR and data signals flow through the ALU, the control unit 
fetches in the same clock cycle the next instruction from memory in the location with the address 
held in PC. Next address and next instruction are latched in the registers at the end of a cycle. 
This scheme constitutes a one-element pipeline of instructions. 

The principal task of the control unit is to generate the address of the next instruction. There are 
essentially only four cases: 

0. Zero on reset. 
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1. The next instructions address is PC+1 (all instructions except branches) 
2. The branch target PC+1 + offset. (Branch instructions). 
3. It is taken from a data register. (This is used for returning from procedures). 

This is reflected by the following program text, and shown in Figure 16.8. 
reg [17:0] PC; 
reg [31:0] IRBuf; 
wire [31:0] IR; 
wire [31:0] pmout; 
wire [17:0] pcmux, nxpc; 
wire cond; 

IR = codebus; 
nxpc = PC + 1; 
pcmux = (~rst) ? 0 : 
 (stall) ? PC :  // stall 
 (BR & cond & u) ? off + nxpc : 
 (BR & cond & ~u) ? C0[19:2]  : 
 nxpc; 

always @ (posedge clk)  PC <= pcmux; end 

 
Fig. 16.8. The control unit 

Branches are the only conditional instructions. Whether a branch is taken or not, is determined by 
the combination of the condition flags selected by the condition code field of the branch 
instruction. IR[27] is the condition sense inversion bit. 

reg N, Z, C, OV;  // condition flags 
wire S; 
assign S = N ^ OV; 
assign cond = IR[27] ^ 
 ((cc == 0) & N | // MI, PL 
  (cc == 1) & Z | // EQ, NE 
  (cc == 2) & C | // CS, CC 
  (cc == 3) & OV | // VS, VC 
  (cc == 4) & (C|Z) | // LS, HI 
  (cc == 5) & S | // LT, GE 
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  (cc == 6) & (S|Z) | // LE, GT 
  (cc == 7)); // T, F 

There is, unfortunately, a complication obfuscating the simple scheme presented so far. It stems 
from the necessity to initialize the processor. Only registers and memory blocks (BRAM) can be 
initialized and loaded by the available FPGA-tools. How, then, is a program (in our case the boot 
loader) moved into memory, the chip-external SRAM? The following scheme has been chosen: 

The initial program is loaded into a BRAM (1K x 32). This block is memory-mapped into high-end 
addresses in the range of the data stack. On startup, the flag PMsel is set and IR is loaded from 
pmout (from the BRAM) at StartAdr. At the end of the program (boot loader), a branch instruction 
with destination 0 jumps to the beginning of the program that had just been loaded into SRAM by 
the boot loader. This is, presumably, but not necessarily, the operating system. The following 
changes and additions are required: 

localparam StartAdr = 18'b111111100000000000; // 0FE000H 

reg PMsel;  // memory select for instruction fetch 
reg [31:0] IRBuf; 

dbram32 PM (  // BRAM 
 .clka (clk), 
 .rdb (pmout),  // output port 
 .ab (pcmux[10:0]));  // address 

assign IR = PMsel ? pmout : IRBuf; 

always @ (posedge clk) begin 
 PMsel <= ~rst | (pcmux[17:11] == 7'b1111111); 
 IRBuf <= stall ? IRBuf : codebus; 
 ... 
end ; 
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17  The processor's environment 

The RISC processor is embedded in an environment (module RISCTop.v) connecting it with 
elements that are FPGA-chip external, but whose are provided on the Spartan development board 
(Figure 17.1). The environment consists of an address decoder, a data multiplexer, and interfaces 
to the memory and peripheral devices.. 

 

Figure 17.1  The RISC configuration 

The decoder for output and the multiplexer for input determine the various addresses of devices: 

adr  input output  
0 0FFFFFFC0H millisecond counter reserved 
4 0FFFFFFC4H switches LEDs 
8 0FFFFFFC8H RS-232 data RS-232 data 
12 0FFFFFFCCH RS-232 status RS-232 control 
16 0FFFFFFD0H SPI data (SD-card, net) SPI data (SD-card, nat) 
20 0FFFFFFD4H SPI status SPI control 
24 0FFFFFFD8H PS/2 keyboard 
28 0FFFFFFDCH mouse 

The circuitry connecting with the SRAM is part of this module, whereas the drivers for the other 
devices are described in separate modules. Note: The signals to and from devices must be listed in 
the heading of the top module, which is not imported by any other module. Their pin numbers are 
specified in a configuration file (.ucf). For details, the reader is referred to the program listing, as 
several items are rather dependent on the given Spartan-3 board. 

17.1. The SRAM memory 
The design of the circuitry around a static RAM is quite straight forward. The only controls are a 
read (SRoe) and a write enable signal (SRwe). Since the SRAM multiplexes data lines for input and 
output, a tri-state driver (SRbuf) must be used on the FPGA. This is shown schematically in Figure 
17.2. 
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Figure 17.2. Connections between processor and SRAM 

However, there is a complication: the feature of byte-wise access. After all, the present RAM is 32 
bits wide (actually there are two 512K x 16-bit chips in parallel). Evidently, some multiplexing is 
unavoidable. The task is significantly eased by the chip's feature of four separate write enables, 
one for each byte of a word. The selection of the byte affected is determined by address bits 0 an 1 
(which are ignored in the case of word-access). This scheme is shown in Figure 17.3. The codebus 
bypasses the multiplexers. 

 
Figure 17.3  Multiplexers for SRAM byte access 

17.2. Peripheral interfaces 
Each of the interfaces to external media is implemented as a separate module and can therefore 
easily be exchanged. Modules are connected with the processor by the input and the output bus, 
and by enable signals wr and rd. 

17.2.1. The PS/2 interface for the keyboard 

PS/2 is mostly used for input devices. It uses 2 wires (apart from ground)., one for data, one for the 
clock. It uses a synchronous transmission, and the clock is driven by the device.  Here it is used for 
the keyboard and the mouse (see Sect. 17.2.5). Transmission occurs in packets of 8 bits. An 
optional third wire serves for output. It is not used in this application. The interface is very simple 
and consists of an 8-bit buffer register. The following describes the interface for the keyboard. 
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A bit is shifted into the data register whenever the clock shows a falling edge, i.e. the clock signal 
Q0 is low and the clock delayed by one cycle Q1 is high. 

 
Figure 17.4  The PS/2  configuration 

In the driver for the keyboard a 16-byte fifo buffer is inserted, forming a queue. This is necessary in order to 
avoid loss of characters when the processor is tied up in computation. 

module PS2( 
    input clk, rst, 
    input done,   // "byte has been read" 
    output rdy,   // "byte is available" 
    output shift, // shift in, transmitter 
    output [7:0] data, 
    input PS2C,   // serial input 
    input PS2D);   // clock 

reg Q0, Q1;  // synchronizer and falling edge detector 
reg [10:0] shreg; 
reg [3:0] inptr, outptr; 
reg [7:0] fifo [15:0];  // 16 byte buffer 
wire endbit; 

assign endbit = ~shreg[0];  //start bit reached correct pos 
assign shift = Q1 & ~Q0; 
assign data = fifo[outptr]; 
assign rdy = ~(inptr == outptr); 

always @ (posedge clk) begin 
  Q0 <= PS2C; Q1 <= Q0; 
  shreg <= (~rst | endbit) ? 11'h7FF : 
    shift ? {PS2D, shreg[10:1]} : shreg; 
  outptr <= ~rst ? 0 : rdy & done ? outptr+1 : outptr; 
  inptr <= ~rst ? 0 : endbit ? inptr+1 : inptr; 
  if (endbit) fifo[inptr] <= shreg[8:1]; 
end   
endmodule 
 

17.2.2  The Mouse 

Subsequently we present two Mouse interfaces. The first (MouseP) is based on the PS/2 Standard 
and caters for most commercially available mice. The second (MouseX) is included here for 
historical reasons. It was used by the computer Lilith in 1979, and used the same Mouse as its 
ancestor Alto (at PARC, 1975). It is distinguished by a very simple hardware without its own 
microprocessor, which is currently contained in most mice. This goes at a cost of a 9-wire cable. 
But today, microprocessors are cheaper than cables. We include this interface here, because it 
allows for a simple explanation of the principle of pointing devices. 

The first interface uses the PS/2 Standard, that is, a 2-wire cable (not counting ground and power). 
It complies with the commercial standard of pointing devices. Details are shown on module 
MouseP.v. 

module MouseP (input rst, clk, 
   inout PS2C, PS2D, 
   output [27:0] out); 
endmodule 

device RISC 
clock 

data data 

PS2D
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The second interface described here is not based on any standard, but it features the same 
interface to the software environment. Its principles are very simple and easily explained, and it 
refrains from the use of a mouse-internal processor. The price for this simplicity is a cable with 7 
wires (plus 2 for power and ground), namely 3 for 3 buttons, and 2 for each direction, x (left/right) 
and y (up/down). 

Let us first explain how signals indicating movements are derived. The key reason for the solution's 
simplicity is that these signals are directly mirrored by the position of a cursor on the display. The 
human user simply moves the Mouse until the cursor has reached the desired position (for 
example, at a displayed object). Thereby, the human eye and hand are included in the feedback 
loop providing the desired precision. This represents a very clever symbiosis between man and 
computer. 

An actual movement is recognized by a simple light sensor (we will restrict our observation to a 
single coordinate x). The movement is transmitted to a wheel consisting of a transparent disc with 
intransparent spokes. A light beam shines through the disk and is received by the light sensor. 
Each time a spoke passes, the light is blocked. Any change in the sensor output signals a 
movement (see Figure 17.5). Unfortunately, this scheme does not allow to recognize the direction 
of the movement (left or right). A second light and sensor solve this problem. The distance between 
the two lights is half the distance of adjacent spokes. 

 
Figure 17.5  Wheel with spokes and sensors 

The signal pair x0, x1 originating from a movement (with constant speed) to the left or to the right is 
shown in Figure 17.6.  

 
Figure 17.6  Signals resulting from movements 

The logic equations for movements to the left and right (or up and down)  are derived from this signal 
pair. For each signal a register records the state. Therefore it can be determined whether a move to 
the left, or to the right, or no move had occurred. The sampling frequency is irrelevant, as long as it is 
high enough. Let x01 be x00 delayed by one clock cycle, and x11 be x10 delayed by one cycle. 

x00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
x01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
x10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
x11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
right 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 
left 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 

x0 x1 

x0 

x1 

turn left turn right 
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Every active right signal causes the 10-bit x counter to be incremented, and every left to be 
decremented. 

An identical circuit is used for the up/down direction, with its wheel set perpendicular to the first 
wheel. Finally, the output is packed into a single word. 3 bits are taken by the keys, and 10 by each of 
the two counters. 

module MouseX( 
  input clk, 
  input [6:0] in, 
  output [27:0] out); 
 
  reg x00, x01, x10, x11, y00, y01, y10, y11; 
  reg ML, MM, MR;  // keys 
  reg [9:0] x, y;  // counters 
 
  wire xup, xdn, yup, ydn; 
 
  assign xup = ~x00&~x01&~x10&x11 | ~x00&x01&x10&x11 | x00&~x01&~x10&~x11 | x00&x01&x10&~x11; 
  assign yup = ~y00&~y01&~y10&y11 | ~y00&y01&y10&y11 | y00&~y01&~y10&~y11 | y00&y01&y10&~y11; 
  assign xdn = ~x00&~x01&x10&~x11 | ~x00&x01&~x10&~x11 | x00&~x01&x10&x11 | x00&x01&~x10&x11; 
  assign ydn = ~y00&~y01&y10&~y11 | ~y00&y01&~y10&~y11 | y00&~y01&y10&y11 | y00&y01&~y10&y11; 
  assign out = {1'b0, ML, MM, MR, 2'b0, y, 2'b0, x}; 
   
  always @ (posedge clk) begin 
    x00 <= in[3]; x01 <= x00; x10 <= in[2]; x11 <= x10; 
    y00 <= in[1]; y01 <= y00; y10 <= in[0]; y11 <= y10; 
    MR <= ~in[4]; MM <= ~in[5]; ML <= ~in[6]; 
    x <= xup ? x+1 : xdn ? x-1 : x;  
    y <= yup ? y+1 : ydn ? y-1 : y; 
  end 
endmodule 

17.2.3. The SPI interface for the SD-card (disk) and the Net 

SPI (Standard Peripheral Interface) is similar to PS/2, and also synchronous. However, there may 
be many participants. They are configured in a loop as shown in Figure 17.7, and the clock is 
provided by a master, namely the RISC. SPI requires 3 wires (apart from ground). 

 
Figure 17.7   SPI-configuration as a ring 

Here, however, no use is made of SPI's ring topology. Instead, One master interface is serving both the disk 
and the net. The connection is determined in module RISC5Top.  The packet (and thus the shift register) 
is 32 bits long 

Transmission frequency is 0.4 MHz at startup (as required by the SD-card), and then is raised to 
8.33 MHz.. Details are shown in the respective program listing. 

 

data data data data 

shclock 
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Figure 17.8  Connections between SPI, SD-card, and Net (see RISCTop5.v) 

// Motorola Serial Peripheral Interface (SPI) PDR 23.3.12 / 16.10.13 
// transmitter / receiver of words (fast, clk/3) or bytes (slow, clk/64) 
// e.g 8.33MHz or ~400KHz respectively at 25MHz (slow needed for SD-card init) 
// note: bytes are always MSbit first; but if fast, words are LSByte first 
 
module SPI( 
  input clk, rst, 
  input start, fast, 
  input [31:0] dataTx, 
  output [31:0] dataRx, 
  output reg rdy, 
  input MISO, 
  output MOSI, SCLK); 
endmodule 

The SPI specifications postulate that bytes are sent with the most significant bit first. This results in 
a somewhat twisted scheme for shifting bits (see Fig. 17.9). 

shreg <= {shreg[30:24], MISO, shreg[22:16], shreg[31], shreg[14:8], 
       shreg[23], shreg[6:0], shreg[15]} 
 

 
Figure 17.9  Shifting with MSB first 

17.2.4. The display controller 

A controller for a raster scan display feeds data from memory to the display. The data area in 
memory is called frame buffer. It contains a fixed number of bits for each pixel on the screen. In this 
case, there is exactly one bit per pixel, signalling black or white. For a 1024 x 768 pixel display 
area, 96 Kbyte are required. 

The pixel position on the display is not determined by an address. Instead, data are received by rhe 
display purely sequentially, and the position is indirectly determined by two synchronization signals, 
hsync (for horizontal sync) at the end of each line, and vsync (for vertical sync) at the end of every 
frame. This scheme originates from cathode ray tube (CRT) monitors, where an electron beam is 
sweeping the screen. It is deflected by magnetic fields, which require some time to sweep back. 
The timing with retrace periods was retained for LCD displays as a legacy. 

.fast        
              .MOSI  
.MISO    .SCLK

 
SPI 

MISO[0]  (Card) 
 
MISO[1]  (Net) 

SS[0]   (Card) 
MOSI[0]   
SCLK[0] 
 
SS[1]  (Net) 
MOSI[1] 
SCLK[1] 
NEN (net enable) 

spiCtrl

0 8 16 24 



 19

The heart of the controller consists of a data buffer (32 bits) fed from memory and shifted out bit by 
bit to the display, and of two counters hcnt and vcnt, representing the horizontal and vertical 
coordinates.The memory word address is derived from hcnt and vcnt: 

vidadr = (hcnt DIV 32) + (vcnt * 32) + org 

Every line consists of 1024 pixels (32 words). The challenge is to find a design with as few registers 
and comparators as possible. There are two signals for suppressing video data: hblank, vblank. 
They are needed for turning the light off durich retrace. 

 
Figure 17.10  Synchronization and blanking signals 

Let us generalize this scheme to displays of w pixels per line and h lines per frame. Also, let w' be 
the number of pixels per line including those of the retrace time, and h' be the number of lines 
including the vertical retrace. Also, let the number of displayed frames per second be n. Then the 
pixel frequency is 

f = w' × h' × n.  

This will in all probability be different from the system clock's frequency. Therefore the need arises 
for a diffenernt pixel clock. It is generated by the FPGA's built-in digital clock manager (dcm). It 
multiplies and divides the system clock by selectable factors. Note that the refresh rate may vary 
within certain bounds for all brands of monitors. Therefore, a simple factor may be chosen for 
division and multiplication. Examples: 

(1024 x 768) 1182 x 791 x 60  =  56'097'720 rounded up to 60 MHz 
(1280 x 1024) 1536 x 1280 x 60 = 117'964'800 rounded up to 125 MHz 

The pixel buffer is fed from the video buffer driven by the system clock, and it is shifted and read by 
the pixel clock. This makes a double-buffering necessary, as shown in Figure 17.11. Also the 
counters are driven by this pixel clock. The numbers for hcnt and vcnt shown are, of course, device-
specific (see Figure 17.10). 

 
Figure 17.11  Buffering the video output 

module VID( 
    input clk, clk25, inv, 
    input [31:0] viddata, 
    output reg req,  // read request 
    output hsync, vsync,  // to display 
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    output [17:0] vidadr, 
    output [2:0] RGB); 
localparam Org = 18'b1101_1111_1111_0000_00;  // DFF00 
reg [9:0] hcnt, vcnt; 
reg [4:0] hword;  // from hcnt, but latched in the clk domain 
reg [31:0] vidbuf, pixbuf; 
reg hblank; 
endmodule 

Both the display controller and the processor access memory directly. It therefore becomes 
necessary to arbitrate in the case where both require access simultaneously, that is, to decide 
which has priority. The decision is simple, because the display controller is time-critical and must 
not be delayed. The processor, on the other hand, can easily be delayed by the already present 
stalling scheme. The signal (wire) dspreq stalls the processor (stallX) and decides whether the 
memory address (SRadr) should be taken from the processor (adr) or the display controller 
(vidadr). The following multiplexer is placed in module RISCTop: 

assign SRadr = dspreq ? vidadr : adr[19:2]; 

17.2.5. The RS-232 interface 

RS-232 is an old standard for serial data transmission (see also Sect. 9.4). We chose to describe it 
here in detail because of its frequent use and inherent simplicity. RS-232 uses 2 wires (apart from 
ground), one for input (RxD) and one for output (TxD) as shown in Figure 17.12. Data are 
transmitted in packets of a fixed length, here of length 8, i.e. byte-wise. Since there is no clock wire, 
bytes are transmitted asynchronously. Their beginning is marked by a start-bit, and at the end a 
stop-bit is appended. Hence, a packet is 10 bits long (see Figure 17.13). Within a packet, 
transmission is synchronous, i.e. with a fixed clock rate, on which transmitter and receiver agree. 
The packet length is short enough to admit slight deviations. The standard defines several packet 
lengths and many clock rates. Here we use a rate of 19200 or 115200 bit/s. 

 
Figure  17.12  RS-232 configuration 

 
Figure 17.13  RS-232 packet format 

The input signal start triggers the state machine by setting register run. The transmitter has 2 
counters and a shift register. Counter tick runs from 0 to 1302, yielding a frequency of 25’000 / 1302 
= 19.2 KHz, the transmission rate for bits. The signal endtick advances counter bitcnt, running from 
0 to 9 (the number of bits in a packet). Signal endbit resets run and the counter to 0. Signal rdy 
indicates whether or not a next byte can be loaded and sent. 

module RS232T( 
    input clk, rst,  // system clock, 25 MHz 
    input start, // request to accept and send a byte 
    input [7:0] data, 
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    output rdy,   // status 
    output TxD);  // serial data 
 
wire endtick, endbit; 
reg run; 
reg [11:0] tick; 
reg [3:0] bitcnt; 
reg [8:0] shreg; 
 
assign endtick = tick == 1302; 
assign endbit = bitcnt == 9; 
assign rdy = ~run; 
assign TxD = shreg[0]; 
 
always @ (posedge clk) begin 
  run <= (~rst | endtick & endbit) ? 0 : start ? 1 : run; 
  tick <= (run & ~endtick) ? tick + 1 : 0; 
  bitcnt <= (endtick & ~endbit) ? bitcnt + 1 : 
    (endtick & endbit) ? 0 : bitcnt; 
  shreg <= (~rst) ? 1 : start ? {data, 1'b0} : 
    endtick ? {1'b1, shreg[8:1]} : shreg; 
end 
endmodule 

The receiver is structured very similarly with 2 counters and a shift register. The state machine is 
triggered by an incoming start bit at RxD. The state rdy is set when the last data bit has been 
received, and it is reset by the done signal, generated when reading a byte. The line RxD is 
sampled in the middle of the bit period rather than at the end, namely when midtick = endtick/2. 

module RS232R( 
    input clk, rst, 
    input done,   // "byte has been read" 
    input RxD, 
    output rdy, 
    output [7:0] data); 

wire endtick, midtick; 
reg run, stat; 
reg [11:0] tick; 
reg [3:0] bitcnt; 
reg [7:0] shreg; 

assign endtick = tick == 1302; 
assign midtick = tick == 651; 
assign endbit = bitcnt == 8; 
assign data = shreg; 
assign rdy = stat; 

always @ (posedge clk) begin 
  run <= (~RxD) | (~rst | endtick & endbit) & run; 
  tick <= (run & ~endtick) ? tick + 1 : 0; 
  bitcnt <= (endtick & ~endbit) ? bitcnt + 1 : 
    (endtick & endbit) ? 0 : bitcnt; 
  shreg <= midtick ? {RxD, shreg[7:1]} : shreg; 
  stat <= (endtick & endbit) ? 1 : (~rst | done) ? 0 : stat; 
end  
endmodule 
 

 


