
 1

10. The Network

10.1. Introduction
Workstations are typically, but not always, connected in a local environment by a network. There
exist two basically different views of the architecture of such nets. The more demanding view is that
all connected stations constitute a single, unified workspace (also called address-space), in which
the individual processors operate. It implies the demand that the "thin" connections between
processors are hidden from the users. At worst they might become apparent through slower data
access rates between the machines. To hide the difference between access within a computer and
access between computers is regarded primarily as a challenge to implementors.

The second, more conservative view, assumes that individual workstations are, although
connected, essentially autonomous units which exchange data infrequently. Therefore, access of
data on partner stations is initiated by explicit transfer commands. Commands handling external
access are not part of the basic system, but rather are implemented in modules that might be
regarded as applications.

In the Oberon System, we adhere to this second view, and in this chapter, we describe the module
Net, which is an autonomous command module based on the network driver SCC. It can be
activated on any station connected in a network, and all of them are treated as equals. Such a set
of loosely coupled stations may well operate in networks with moderate transmission rates and
therefore with low-cost hardware interfaces and twisted-pair wires.

An obvious choice for the unit of transferred data is the file. The central theme of this chapter is
therefore file transfer over a network. Some additional facilities offered by a dedicated server station
will be the subject of Chapter 11. The commands to be presented here are a few only: SendFiles,
ReceiveFiles, and SendMsg.

As explained in Chapter 2, Oberon is a single-process system where every command monopolizes
the processor until termination. When a command involves communication over a network, (at
least) two processors are engaged in the action at the same time. The Oberon paradigm therefore
appears to exclude such cooperation; but fortunately it does not, and the solution to the problem is
quite simple.

Every command is initiated by a user operating on a workstation. For the moment we call it the
master (of the command under consideration). The addressed station - obviously called the server -
must be in a state where it recognizes the command in order to engage in its execution. Since the
command - called a request - arrives in encoded form over the network, an Oberon task
represented by a handler procedure must be inserted into the event polling loop of the system.
Such a handler must have the general form

IF event present THEN handle event END

The guard, in this case, must imply that a request was received from the network. We emphasize
that the event is sensed by the server only after the command currently under execution, if any, has
terminated. However, data arrive at the receiver immediately after they are sent by the master.
Hence, any sizeable delay is inherently inadmissible, and the Oberon metaphor once again
appears to fail. It does not fail, however, because the unavoidable, genuine concurrency of sender
and receiver action is handled within the driver module which places the data into a buffer. The
driver is activated by an interrupt, and its receiver buffer effectively decouples the partners and
removes the stringent timing constraints. All this remains completely hidden within the driver
module.

10.2. The protocol
If more than a single agent participates in the execution of a command, a convention must be
established and obeyed. It defines the set of requests, their encoding, and the sequence of data

 2

exchanges that follow. Such a convention is called a protocol. Since in our metaphor, actions
initiated by the master and the server strictly follow each other in alternation, the protocol can be
defined using EBNF (extended Backus-Naur formalism), well-known from the syntax specification
of languages. Items originating from the master will be written with normal font, those originating
from the server appear in italics.

A simple form of the ReceiveFile request is defined as follows and will be refined subsequently:

ReceiveFile = SND filename (ACK data | NAK).

Here, the symbol SND represents the encoded request that the server send the file specified by the
file name. ACK signals that the request is honoured and the requested data follow. The NAK
symbol indicates that the requested file cannot be delivered. The transaction clearly consists of two
parts, the request and the reply, one from each partner.

This simple-minded scheme fails because of the limitation of the size of each transmitted portion
imposed by the network driver. We recall that module SCC restricts the data of each packet to 512
bytes. Evidently, files must be broken up and transmitted as a sequence of packets. The reason for
this restriction is transmission reliability. The break-up allows the partner to confirm correct receipt
of a packet by returning a short acknowledgement. Each acknowledgement also serves as request
for the next packet. An exception is the last acknowledgement following the last data portion, which
is characterized by its length being less than the admitted maximum. The revised protocol is
defined as

ReceiveFile = SND filename (DAT data ACK {DAT data ACK} | NAK).

We now recall that each packet as defined in Section 9.3. is characterized by a type in its header.
The symbols SND, DAT, ACK, and NAK indicate this packet type. The data portions of ACK and
NAK packets are empty.

The revised protocol fails to cope with transmission errors. Correct transmission is checked by the
driver through a cyclic redundancy check (CRC), and an erroneous packet is simple discarded. This
implies that a receiver must impose a timing constraint. If an expected packet fails to arrive within a
given time period (timeout), the request must be repeated. In our case, a request is implied by an
acknowledgement. Hence, the acknowledgement must specify whether the next (normal case) or
the previously requested (error case) packet must be sent. The solution is to attach a sequence
number to each acknowledgement and to each data packet. These numbers are taken modulo 8,
although in principle modulo 2 would suffice.

With the addition of a user identification and a password to every request, and of an alternate reply
code NPR for "no permission", the protocol reaches its final form:

ReceiveFile = SND username password filename (datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The protocol for file transmission from the master to the server is defined similarly:

SendFile = REC username password filename (ACK0 datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The third request listed above, SendMsg, does not refer to any file, but merely transmits and
displays a short message. It is included here for testing the link between two partners and perhaps
for visibly acknowledging a rendered service by the message "done", or "thank you".

SendMsg = MSG message ACK.

10.3. Station addressing
Every packet must carry a destination address as well as the sender's address. Addresses are
station numbers. It would certainly be inconvenient for a user to remember the station number of a
desired partner. Instead, the use of symbolic names is preferred. We have become accustomed to
use the partner's initials for this purpose.

 3

The source address is inserted automatically into packet headers by the driver. It is obtained from a
dip switch set when a computer is installed and connected. But where should the destination
address come from? From the start we reject the solution of an address table in every workstation
because of the potential inconsistencies. The concept of a centralized authority holding a
name/address dictionary is equally unattractive, because of the updates required whenever a
person uses a different computer. Also, we have started from the premise to keep all participants in
the network equal.

The most attractive solution lies in a decentralized name service. It is based on the broadcast
facility, i.e. the possibility to send a packet to all connected stations, bypassing their address filters
with a special destination address (-1). The broadcast is used for emitting a name request
containing the desired partner's symbolic name. A station receiving the request returns a reply to
the requester, if that name matches its own symbolic name. The requester then obtains the desired
partner's address from the source address field of the received reply. The corresponding simple
protocol is:

NameRequest = NRQ partnername [NRS].

Here, the already mentioned timeout facility is indispensible. The following summarizes the protocol
developed so far:

protocol = {request}.
request = ReceiveFile | SendFile | SendMsg | NameRequest.

The overhead incurred by name requests may be reduced by using a local address dictionary. In
practice, a single entry is satisfactory. A name request is then needed whenever the partner
changes.

10.4. The implementation
Module Net is an implementation of the facilities outlined above. The program starts with a number
of auxiliary, local procedures. They are followed by procedure Serve which is to be installed as an
Oberon task, and the commands SendFiles, ReceiveFiles, and SendMsg, each of which has its
counterpart within procedure Serve. At the end are the commands for starting and stopping the
server facility.

For a more detailed presentation we select procedure ReceiveFiles. It starts out by reading the first
parameter which designates the partner station from the command line. Procedure FindPartner
issues the name request, unless the partner's address has already been determined by a previous
command. The global variable partner records a symbolic name (id) whose address is stored in the
destination field of the global variable head0, which is used as header in every packet sent by
procedure SCC.SendPacket. The variable partner may be regarded as a name cache with a single
entry and with the purpose of reducing the number of issued name requests.

If the partner has been identified, the next parameter is read from the command line. It is the name
of the file to be transmitted. If the parameter has the form name0:name1, the file stored on the
server as name0.name1 is fetched and stored locally as name1. Hence, name0 serves as a prefix
of the file name on the server station.

Thereafter, the request parameters are concatenated in the local buffer variable buf. They are the
user's name and password followed by the file name. (User name and password remain unused by
the server presented here). The command package is dispatched by the call Send(SND, k, buf),
where k denotes the length of the command parameter string. Then the reply packet is awaited by
calling ReceiveHead. If the received packet's type is DAT with sequence number 0, a new file is
established. Procedure ReadData receives the data and stores them in the new file, obeying the
protocol defined in Section 10.2. This process is repeated for each file specified in the list of file
names in the command line.

Procedure ReceiveHead(T) receives packets and discards them until one arrives from the partner
from which it is expected. The procedure represents an input filter in addition to the one provided by

 4

the hardware. It discriminates on the basis of the packets' source address, whereas the hardware
filter discriminates on the basis of the destination address. If no packet arrives within the allotted
time T, a type code -1 is returned, signifying a timeout.

Procedure ReceiveData checks the sequence numbers of incoming data packets (type 0 - 7). If an
incorrect number is detected, an ACK-packet with the previous sequence number is returned (type
16 - 23), requesting a retransmission. At most two retries are undertaken. This seems to suffice
considering that also the server does not accept any other requests while being engaged in the
transmission of a file.

The part corresponding to ReceiveFiles within procedure Serve is guarded by the condition
head1.typ = SND. Variable head1 is the recipient of headers whenever a packet is received by
ReceiveHead. First, the request's parameters are scanned. Id and pw are ignored. Then the
requested file is opened. If it exists, the transmission is handled by ReceiveData's counterpart,
procedure SendData. The time limit for receiving the next request is T1, whereas the limit of
ReceiveData for receiving the next data packet is T0. T1 is roughly T0 multiplied by the maximum
number of possible (re)transmissions. Before disengaging itself from a transaction, the sender of
data waits until no further retransmission requests can be expected to arrive. The value T0 (300)
corresponds to 1s; the time for transmission of a packet of maximum length is about 16ms.

Procedure SendFiles is designed analogously; its counterpart in the server is guarded by the
condition head1.typ = REC. The server accepts the request only if its state is unprotected (global
variable protected). Otherwise the request is negatively acknowledged with an NPR packet. We
draw attention to the fact that procedures SendData and ReceiveData are both used by command
procedures as well as by the server.

 5

11. A Dedicated file-distribution and mail-server
11.1. Concept and structure
In a system of loosely coupled workstations it is desirable to centralize certain services. A first
example is a common file store. Even if every station is equipped with a disk for permanent data
storage, a common file service is beneficial, e.g. for storing the most recent versions of system files,
reference documents, reports, etc. A common repository avoids inconsistencies which are
inevitable when local copies are created. We call this a file distribution service.

A centralized service is also desirable if it requires equipment whose cost and service would not
warrant its acquisition for every workstation, particularly if the service is infrequently used. A prime
example of this case is a printing service.

The third case is a communication facility in the form of electronic mail. The repository of messages
must inherently be centralized. We imagine it to have the form of a set of mailboxes, one for each
user in the system. A mailbox needs to be accessible at all times, i.e. also when its owner's
workstation has been switched off.

A last example of a centralized service is a time server. It allows a station's real time clock to be
synchronized with a central clock.

In passing we point out that every user has full control over his station, including the right to switch
it on and off at any time. In contrast, the central server is continuously operational.

In this chapter, we present a set of server modules providing all above mentioned services. They
rest on the basic Oberon System without module Net (see Chapter 10). In contrast to Net, module
NetServer, which handles all network communication, contains no command procedures (apart
from those for starting and stopping it). This is because it never acts as a master. The counterparts
of its server routines reside in other modules, including (an extended version of) Net, on the
individual workstations.

Routines for the file distribution service are the same as those contained in module Net, with the
addition of permission checks based on the received user names and passwords. Routines for
printing and mail service could in principle also be included in NetServer in the same way. But
considerations of reliability and timing made this simple solution appear as unattractive. A weaker
coupling in time of data transmission and data consumption is indeed highly desirable. Therefore,
data received for printing or for dispatching into mailboxes are stored (by NetServer) into temporary
files and thereafter "handed over" to the appropriate agent, i.e. the print server or the mail server.

This data-centered interface between servers - in contrast to procedural interfaces - has the
advantage that the individual servers are independent in the sense that none imports any other.
Therefore, their development could proceed autonomously. Their connection is instead a module
which defines a data structure and associated operators for passing temporary files from one server
to another. The data structure used for this purpose is the first-in-first-out queue. We call its
elements tasks, because each one carries an objective and an object, the file to be processed. The
module containing the FIFOs is called Core. The resulting structure of the involved modules is
shown in Fig. 11.1.

Fig. 11.1. includes yet another server, LineServer, and shows the ease with which additional
servers may be inserted in this scheme. They act as further sources and/or sinks for tasks, feeding
or consuming the queues contained in Core. LineServer indeed produces and consumes tasks like
NetServer. Instead of the RS-485 bus, it handles the RS-232 line which, connected to a modem,
allows access to the server over telephone lines. We refrain from describing this module in further
detail, because in many ways it is a mirror of NetServer.

A centralized, open server calls for certain protection measures against unauthorized use. We
recall that requests always carry a user identification and a password as parameters. The server

 6

checks their validity by examining a table of users. The respective routines and the table are
contained in module Core (see Sect. 11.5).

Figure 11.1 Module structure of server systems

11.2. Electronic Mail Service
The heart of an e-mail service is the set of mailboxes stored on the dedicated, central server. Each
registered user owns a mailbox. The evidently necessary operations are the insertion of a message
and its retrieval. In contrast to customary letter boxes, however, a retrieved message need not
necessarily be removed from the box; its retrieval produces a copy. The box thereby automatically
becomes a repository, and messages can be retrieved many times. This scheme calls for an
additional command which removes a message from the box. Also, a command is needed for
delivering a table of contents, in which presumably each message is represented by an indication of
its sender and time of arrival.

The mail scheme suggested above results in the following commands:

Net.Mailbox ServerName. This command fetches a table of contents of the current user's mailbox
from the specified server and displays it in a new viewer. The user's name and password must
have been registered previously by the command System.SetUser.

Net.SendMail ServerName. The text in the marked viewer is sent to the specified server. In order to
be accepted, the text must begin with at least one line beginning with "To:" and containing at least
one recipient.

Net.ReceiveMail. This command is contained in the title bar (menu) of the viewer obtained when
requesting the table of contents. Prior to issuing the command, the message to be read must have
been specified by selecting a line in the table of contents in this viewer.

Net.DeleteMail. This command is also contained in the mailbox viewer's title bar. The message to
be deleted must be selected before issuing the command.

The mail system presented here is primarily intended to serve as an exchange for short messages
which are typically sent, received, read, and discarded. Mailboxes are not intended to serve as long
term archives for a large and ever growing number of long pieces of text. This restrictiveness of
purpose allows to choose a reasonably simple implementation and results in an efficient, practically
instantaneous access to messages when the server is idle.

The Oberon mail server used at ETH also provides communication with external correspondents. It
connects to an external mail server which is treated as a source and a sink for messages (almost)
like other customers. Additionally, messages sent to that server need to be encoded into a
standardized format, and those received need to be decoded accordingly. The parts of module
MailServer for encoding and decoding are not described in this book. We merely divulge the fact
that its design and implementation took a multiple of the time spent on the fast, local message
exchange, to which we confine this presentation.

From the structures explained in Section 11.1. it follows that three agents are involved in the
transfer of messages from the user into a mailbox. Therefore, additions to the server system
distribute over three modules. New commands are added to module Net (see Section 10.4.); these
procedures will be listed below. Their counterparts reside in module NetServer on the dedicated

NetServer LineServer PrintServer MailServer

SCC RS232 PrintMaps Core

Oberon
Texts
Files

 7

computer. The third agent is module MailServer; both are listed below in this Section. The latter
handles the insertion of arriving messages into mailboxes. The path which a message traverses for
insertion and retrieval is shown in Fig. 11.2. Rectangles with bold edges mark storage.

Figure 11.2 Path of messages to and from mailbox

Communication between the master station and the dedicated server runs over the network and
therefore calls for an extension of its protocol (see Sect. 10.2.). The additions directly correspond to
the four commands given above.

MailBox = MDIR username password (datastream | NAK | NPR).
SendMail = RML username password (ACK datastream | NAK | NPR).
ReceiveMail = SML username password msgno (datastream | NAK | NPR).
DeleteMail = DML username password msgno (ACK | NAK | NPR).

The message number is taken from the selected line in the mailbox viewer. The data transmitted
are taken as (unformatted) texts. This is in contrast to file transfers, where they are taken as any
sequence of bytes. The four command procedures listed below belong in module Net; they are
listed together with the auxiliary procedures SendText and ReceiveText which closely correspond
to SendData and ReceiveData (see Sect. 10.4).

We now turn our attention to the command procedures' counterparts in module NetServer listed in
this Section. In order to explain these routines, a description of their interface with the mail server
and a definition of the structure of mailboxes must precede. We begin with the simplest case, the
counterpart of SendMail. It is the part of procedure NetServer.Serve which is guarded by the
condition typ = RML, indicating a request to receive mail. As in all other services, the parameters
username and password are read and the admissibility of the request is checked. The check is
performed by procedure Core.UserNo which yields a negative number if service is to be refused. In
the affirmative case, procedure ReceiveData obtains the message and stores it on a file, which is
thereafter inserted into the mail queue as a task to be handled by the mail server at a later time.
This may involve distribution of the message into several mailboxes.

Module Core is listed in Sect. 11.5. As mentioned before, it serves as link between the various
server modules, defining the data types of the linking queues and also of mailboxes. Task queues
are represented as FIFO-lists. The descriptor of type Queue contains a pointer to the first list
element used for retrieval, and a pointer to the last element used for insertion (see Fig. 11.3).
These pointers are not exported; instead, the next task is obtained by calling procedure
Core.GetTask, and it is deleted by Core.RemoveTask. There exist two exported variables of type
Queue: MailQueue consumed by MailServer, and PrintQueue consumed by PrintServer (see Sect.
11.3.). (In fact, we use a third queue: LineQueue consumed by LineServer). Elements of queues
are of type TaskDesc which specifies the file representing the data to be consumed. Additionally, it
specifies the user number and identification of the task's originator. Three procedures are provided
by module Core for handling task queues:

PROCEDURE InsertTask(VAR q: Queue; F: Files.File; VAR id: ARRAY OF CHAR; uno: INTEGER);

PROCEDURE GetTask(VAR q: Queue; VAR F: Files.File; VAR id: ARRAY OF CHAR; VAR uno:
INTEGER);

PROCEDURE RemoveTask(VAR q: Queue);

The server's counterparts of the remaining mail commands access mailboxes directly. The
simplicity of the required actions - a result of a carefully chosen mailbox representation - and
considerations of efficiency do not warrant a detour via task queue and mail server.

Net NetServer

mail queue

mail box

MailServer
wire

 8

Figure 11.3 Structure of task queue

Every mailbox is represented as a file. This solution has the tremendous advantage that no special
administration has to be introduced to handle a reserved partition of disk store for mail purposes. A
mailbox file is partitioned into three parts: the block reservation part, the directory part, and the
message part. Each part is quickly locatable, because the first two have a fixed length (32 and
31*32 = 992 bytes). The message part is regarded as a sequence of blocks (of 256 bytes), and
each message occupies an integral number of adjacent blocks. Corresponding to each block, the
block reservation part contains a single bit indicating whether or not the block is occupied by a
message. Since the block reservation part is 32 bytes long, the message part contains at most 256
blocks, i.e. 64K bytes. The block length was chosen after an analysis of messages which revealed
that the average message is less than 500 bytes long.

The directory part consists of an array of 31 elements of type MailEntry, a record with the following
fields: pos and len indicate the index of the message's first block and the message's number of
bytes; time and date indicate the message's time of insertion, and originator indicates the
message's source. The entries are linked (field next) in chronological order of their arrival, and entry
0 serves as the list's header. It follows that a mailbox contains at most 30 messages. An example of
a mailbox state is shown in Fig. 11.4.

MailEntry = RECORD
 pos, next: INTEGER;
 len: LONGINT;
 time, date: INTEGER;
 originator: ARRAY 20 OF CHAR
 END ;
MResTab = ARRAY 8 OF SET;
MailDir = ARRAY 31 OF MailEntry;

We are now in a position to inspect the handler for requests for message retrieval. It is guarded
by the condition typ = SML. After a validity check, the respective requestor's mailbox file is
opened. The last mailbox opened is retained by the global variable MF which acts as a single
entry cache. The associated user number is given by the global variable mailuno. Since typically
several requests involving the same mailbox follow, this measure avoids the repeated reopening
of the same file. Thereafter, a rider is directly positioned at the respective directory entry for
reading the message's length and position in the message part. The rider is repositioned
accordingly, and transmission of the message is handled by procedure SendMail.

8

jg

15

hm

3

nw

NIL

3

last

first

n

uno

id

next

file

Queue

 9

Figure 11.4 State of mailbox file

Requests for the mailbox directory are handled by the routine guarded by the condition typ = MDIR.
The directory part must be read and converted into a text. This task is supported by various
auxiliary procedures (Append) which concatenate supplied data in a buffer for latter transmission.
We emphasize that this request does not require the reading of any other part of the file, and
therefore is very swift.

The last of the four mail service requests (DML) deletes a specified message. Removal from the
directory requires a relinking of the entries. Unused entries are marked by their len field having
value 0. Also, the blocks occupied by the message become free. The block reservation part must
be updated accordingly.

In passing we note that the use of files for representing mailboxes, in combination with the file
distribution services residing on the same server station, allows anyone to access (and inspect) any
mailbox. Although we do not claim that this system provides secure protection against snooping, a
minimal effort for protection was undertaken by a simple encoding of messages in mailbox files.
This encoding is not shown in the program listings contained in this book.

One operation remains to be explained in more detail: the processing of tasks inserted into the mail
queue. It consists of the insertion of the message represented by the task's file into one or several
mailboxes. It involves the interpretation of the message's header, i.e. lines containing addresses,
and the construction of a new header containing the name of the originator and the date of insertion
into the mailbox. These actions are performed by procedures in module MailServer. Its procedure
Serve is installed as an Oberon Task, and it is guarded by the condition Core.MailQueue.n > 0,
indicating that at least one message needs to be dispatched.

The originator's name is obtained from Core.GetUserName(uno), where uno is the user number
obtained from the queue entry. The actual time is obtained from Oberon.GetClock. The form of the
new header is shown by the following example:

From: Gutknecht
At: 12.08.91 09:34:15

The received message's header is then searched for recipients. Their names are listed in header
lines starting with "To" (or "cc"). After a name has been read, the corresponding user number is
obtained by calling Core.UserNum. Then the message is inserted into the designated mailbox by
procedure Dispatch. The search for recipients continues, until a line is encountered that does not
begin with "To" (or "cc"). A negative user number indicates that the given name is not registered. In

Block reservation part

1100000101111110111111

Directory part

Message part

pos
len
time
date
orig
next

0

12

0

8
92

10:7:12
15.2.91
Muller

20

 15
197

11:27:2
17.1.90
Templ

2

 2
1150

23:41:8
6.6.91
Franz

0

15 0 2 8

0 1 2 12 20

 10

this case, the message is returned to the sender, i.e. inserted into the mailbox of the sender. An
exception is the recipient "all" which indicates a broadcast to all registered users.

Procedure Dispatch first opens the mailbox file of the user specified by the recipient number rno. If
a mailbox exists, its block reservation part (mrtab) and its directory part (mdir) are read. Otherwise
a new, empty box is created. Then follows the search for a free slot in the directory and, if found,
the search for a sufficient number of free, adjacent blocks in the message part. The number of
required blocks is given by the message length. If either no free slot exists, or there is no large
enough free space for the message part, the message is returned to the sender (identified by sno).
If also this attempt fails, the message is redirected to the postmaster (with user number 0). The
postmaster is expected to inspect his mailbox sufficiently often so that no overflow occurs. If the
postmaster's mailbox also overflows, the message is lost.

Only if all conditions for a successful completion are satisfied, is insertion begun. It starts with the
marking of blocks in the reservation table and with the insertion of the new directory information.
Table and directory are then updated on the file. Thereafter, the message with the constructed new
header is written into the message part.

Perhaps it may seem to the reader that the addition of a separate module MailServer, together with
a new Oberon Task and the machinery of the mail queue is not warranted by the relative simplicity
of the insertion operation, and that it could have been incorporated into module NetServer just as
well as message extraction. The picture changes, however, if handling of external mail is to be
added, and if access to mailboxes via other channels, such as the RS-232 line, is to be provided.
The presented solution is based on a modular structure that facilitates such extensions without
change of existing parts. External mail routines inevitably have to cope with message formats
imposed by standards. Format transformations, encoding before sending to an external server and
decoding before dispatching become necessary. Indeed, these operations have inflated module
MailServer in a surprising degree. And lastly, the queuing machinery supports the easy insertion of
additional message sources and provides a welcome decoupling and relaxation of timing
constraints, particularly in the case of low-speed transmission media such as telephone lines.

11.4. Miscellaneous services
There exist a few additional services that are quite desirable under the presence of a central facility,
and at the same time easy to include. They are briefly described in this section.

The set of commands of the file distribution service is augmented by Net.DeleteFiles and
Net.Directory, allowing the remote deletion of files and inspection of the server's directory. The
command procedures are listed below and must be regarded as part of module Net (Sect. 10.4).
They communicate with their counterparts in module NetServer (Sect. 11.2.) according to the
following protocol:

DeleteFile = DEL username password filename (ACK | NAK | NPR).
Directory = FDIR username password prefix (datastream | NAK | NPR).

The directory request carries a prefix; it uses procedure FileDir.Enumerate to obtain all file names
starting with the specified prefix. Thereby the search can be limited to the relevant section of the
directory.

Since requests to the server are always guarded by a password, a facility is necessary to set and
change the password stored by the server. The respective command is Net.SetPassword, and its
handler in the server is guarded by the condition typ = NPW. The corresponding protocol is

NewPassword = NPW username oldpassword
(ACK DAT newpassword (ACK | NAK) | NAK | NPR).

Finally, procedure Net.GetTime allows the workstation's real time clock to be adjusted to that of the
central server. The protocol is

GetTime = TRQ TIM time date.

 11

In concluding we summarize the entire protocol specification below. The combined server facility,
comprising file distribution, electronic mail, printing, and time services is operating on a Ceres-1
computer (1 Mips) with a 2 MByte store, of which half is used by the printer's bitmap.

Summary of Protocol:
protocol = {request}.
request = ReceiveFile | SendFile | DeleteFile | Directory |
 MailBox | SendMail | ReceiveMail | DeleteMail |
 PrintStream | SendMsg | NameRequest | NewPassword | GetTime.
ReceiveFile = SND username password filename (datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.
SendFile = REC username password filename (ACK0 datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.
DeleteFile = DEL username password filename (ACK | NAK | NPR).
Directory = FDIR username password prefix (datastream | NAK | NPR).
MailBox = MDIR username password (datastream | NAK | NPR).
SendMail = RML username password (ACK datastream | NAK | NPR).
ReceiveMail = SML username password msgno (datastream | NAK | NPR).
DeleteMail = DML username password msgno (ACK | NAK | NPR).
PrintStream = PRT username password (ACK datastream | NAK | NPR).
SendMsg = MSG message ACK.
NameRequest = NRQ partnername [NRS].
NewPassword = NPW username oldpassword
 (ACK DAT newpassword (ACK | NAK) | NAK | NPR).
GetTime = TRQ TIM time date.

11.5. User Administration
It appears to be a universal law that centralization inevitably calls for an administration. The
centralized mail and printing services make no exception. The typical duties of an administration
are accounting and protection against misuse. It has to ensure that rendered services are counted
and that no unauthorized user is taking advantage of the server. An additional duty is often the
gathering of statistical data. In our case, accounting plays a very minor role, and the reason for the
existence of the administration presented here is primarily protection.

We distinguish between two kinds of protection. The first is protection of the server's resources in
general, the second is that of individual users' resources from being accessed by others. Whereas
in the first case some validation of a user's identification might suffice, the second case requires the
association of personal resources with user names. In any case, the central server must store data
for each member of the set of registered users. Specifically, it must be able to check the
admissibility of a user's request on the basis of stored information.

Evidently, a protection administration is similar in purpose and function to a lock. Quite regularly,
locks are subjected to attempts of breaking them, and locksmiths are subjected to attempts of being
outwitted. The race between techniques of breaking locks and that of better countermeasures is
well known, and we do not even try to make a contribution to it. Our design is based on the premise
that the Oberon Server operates in a harmonious environment. Nevertheless, a minimal amount of
protection machinery was included. It raises the amount of effort required for breaking protection to
a level which is not reached when curiosity alone is the motivation.

The data about users is held in a table in module Core. As was mentioned earlier, Core acts as
connector between the various servers by means of task queues. Its second purpose is to provide
the necessary access to user data via appropriate procedures.

In the simplest solution, each table entry would contain a user name only. For each request, the
administration would merely test for the presence of the request's user name in the table. A
significant step towards safe protection is the introduction of a password in addition to the user
name. In order that a request be honoured, not only must the name be registered, but the delivered
and the stored password must match. Evidently, abusive attempts would aim at recovering the

 12

stored passwords. Our solution lies in storing an encoded password. The command
System.SetUser, which asks for a user identification and a password, immediately encodes the
password, and the original is stored nowhere. The encoding algorithm is such that it is difficult to
construct a corresponding decoder.

The mail service requires a third attribute in addition to identification and encoded password: the
user's name as it is used for addressing messages. Identification typically consists of the user's
initials; for the name we suggest the full last name of the user and discourage cryptic abbreviations.

The printing service makes an accounting facility desirable. A fourth field in each user table entry
serves as a count for the number of printed pages. As a result, there are four fields: id, name,
password, and count. The table is not exported, but only accessible via procedures. Core is a good
example of a resource hiding module. The program is listed below, and a few additional comments
follow here.

Procedures UserNo(id) and UserNum(name) yield the table index of the identified user; it is called
user number and is used as a short encoding for recipients and senders within the mail server. In
other servers, the number is merely used to check a request's validity.

The user information must certainly survive any intermission of server operation, be it due to
software, hardware, or power failure. This requires that a copy of the user information is held on
backup store (disk). The simplest solution would be to use a file for this purpose. But this would
indeed make protection too vulnerable: files can be accessed easily, and we have refrained from
introducing a file protection facility. Instead, the backup of the user information is held on a few
permanently reserved sectors on the server machine, which are inaccessible to the file system.

Apart from procedures and variables constituting the queuing mechanism for tasks, the procedures
exported from module Core all belong to the administration, and they can be divided into two
categories. The first category contains the procedures used by the three servers presented in this
Chapter, and they are UserNo, UserNum, IncPageCount, SetPassword, GetUserName and
GetFileName. The second category consists of the procedures NofUsers and GetUser for
inspecting table entries, and InsertUser, DeleteUser, ClearPassword, ClearCounts, and Init for
making changes to the table.

The client of the latter category is a module Users which is needed by the human administrator of
the server facility.

The reader may at this point wonder why a more advanced concept of administration has not been
chosen, which would allow the human administrator to operate the server remotely. A quick
analysis of the consequences of this widely used approach reveals that a substantial amount of
additions to our system would be required. The issue of security and protection would become
inflated into dimensions that are hardly justified for our local system. The first consequence would
be a differentiation among levels of protection. The administrator would become a so-called super-
user with extra privileges, such as changing the user table. And so the game of trying to break the
protection measures starts to become an interesting challenge.

We have resisted the temptation to introduce additional complexity. Instead, we assume that
physical access to the server station is reserved to the administrator. Naturally, module Users and
in particular the symbol file of Core do not belong to the public domain. In concluding, we may point
out that the impossibility of activating users' programs on the server station significantly reduces the
possibilities for inflicting damage from the exterior.

 13

12 The compiler

12.1. Introduction
The compiler is the primary tool of the system builder. It therefore plays a prominent role in the
Oberon System, although it is not part of the basic system. Instead, it constitutes a tool module - an
application - with a single command: Compile. It translates program texts into machine code.
Therefore, it is as a program inherently machine-dependent; it acts as the interface between source
language and target computer.

In order to understand the process of compilation, the reader needs to be familiar with the source
language Oberon defined in Appendix 1, and with the target computer RISC, defined in Appendix 2.

The language is defined as an infinite set of sequences of symbols taken from the language's
vocabulary. It is described by a set of equations called syntax. Each equation defines a syntactic
construct, or more precisely, the set of sequences of symbols belonging to that construct. It
specifies how that construct is composed of other syntactic constructs. The meaning of programs is
defined in terms of semantic rules governing each such construct.

Compilation of a program text proceeds by analyzing the text and thereby decomposing it
recursively into its constructs according to the syntax. When a construct is identified, code is
generated according to the semantic rule associated with the construct. The components of the
identified construct supply parameters for the generated code.

It follows that we distinguish between two kinds of actions: analyzing steps and code generating
steps. In a rough approximation we may say that the former are source language dependent and
target computer independent, whereas the latter are source language independent and target
computer dependent. Although reality is somewhat more complex, the module structure of this
compiler clearly reflects this division. The main module of the compiler is ORP (for Oberon to RISC
Parser) It is primarily dedicated to syntactic analysis, parsing. Upon recognition of a syntactic
construct, an appropriate procedure is called the code generator module ORG (for Oberon to RISC
Generator). Apart from parsing, ORP checks for type consistency of operands, and it computes the
attributes of objects identified in declarations.

Whereas ORP mirrors the source language and is independent of a target computer, ORG reflects
the target computer, but is independent of the source language.

Oberon program texts are regarded as sequences of symbols rather than sequences of characters.
Symbols themselves, however, are sequences of characters. We refrain from explaining the
reasons for this distinction, but mention that apart from special characters and pairs such as +, &,
<=, also identifiers, numbers, and strings are classified as symbols. Furthermore, certain capital
letter sequences are symbols, such as IF, END, etc. Each time the syntax analyzer (parser)
proceeds to read the next symbol, it does this by calling procedure Get, which constitutes the so-
called scanner residing in module ORS (for Oberon to RISC Scanner). It reads from the source text
as many characters as are needed to recognize the next symbol.

In passing we note that the scanner alone reflects the definition of symbols in terms of characters,
whereas the parser is based on the notion of symbols only. The scanner implements the
abstraction of symbols. The recognition of symbols within a character sequence is called lexical
analysis.

Ideally the recognition of any syntactic construct, say A, consisting of subconstructs, say B1, B2, ...
, Bn, leads to the generation of code that depends only on (1) the semantic rules associated with A,
and (2) on (attributes of) B1, B2, ... , Bn. If this condition is satisfied, the construct is said to be
context-free, and if all constructs of a language are context-free, then also the language is context-
free. Syntax and semantics of Oberon adhere to this rule, although with a significant exception. This

 14

exception is embodied by the notion of declarations. The declaration of an identifier, say x, attaches
permanent properties to x, such as the fact that x denotes a variable and that its type is T. These
properties are "invisible" when parsing a statement containing x, because the declaration of x is not
also part of the statement. The "meaning" of identifiers is thus inherently context-dependent.

Context-dependence due to declarations is the immediate reason for the use of a global data
structure which represents the declared identifiers and their properties (attributes). Since this
concept stems from early assemblers where identifiers (then called symbols) were registered in a
linear table, the term symbol table tends to persist for this structure, although in this compiler it is
considerably more complex than an array. Basically, it grows during the processing of declarations,
and it is searched while expressions and statements are processed. Procedures for building and for
searching are contained in module ORB.

A complication arises from the notion of exports and imports in Oberon. Its consequence is that the
declaration of an identifier x may be in a module, say M, different from where x is referenced. If x is
exported, the compiler includes x together with its attributes in the symbol file of the compiled
module M. When compiling another module which imports M, that symbol file is read and its data
are incorporated into the symbol table. Procedures for reading and writing symbol files are
contained in module ORB, and no other module relies on information about the structure of symbol
files.

The syntax is precisely and rigorously defined by a small set of syntactic equations. As a result, the
parser is a reasonably perspicuous and short program. In spite of the high degree of regularity of
the target computer, the process of code generation is more complicated, as shown by module
ORG.

The resulting module structure of the compiler is shown in Fig. 12.1 in a slightly simplified manner.
In reality OCS is imported by all other modules due to their need for procedure OCS.Mark. This,
however, will be explained later.

Figure 12.1 Compiler's module structure

12.2. Code patterns
Before it is possible to understand how code is generated, one needs to know which code is
generated. In other words, we need to know the goal before we find the way leading to the goal. A
fairly concise description of this goal is possible due to the structure of the language. As explained
before, semantics are attached to each individual syntactic construct, independent of its context.
Therefore, it suffices to list the expected code - instead of an abstract semantic rule - for each
syntactic construct.

As a prerequisite to understanding the resulting instructions and in particular their parameters, we
need to know where declared variables are stored, i.e. which are their addresses. This compiler

Compiler / Parser ORP

Code generator ORG

Table handler ORB

Scanner ORS

Texts, Oberon Files

 15

uses the straight-forward scheme of sequential allocation of consecutively declared variables. An
address is a pair consisting of a base address (in a register) and an offset. Global variables are
allocated in the module's data section and the respective base address register is SB (Static Base,
see Chapter 6). Local variables are allocated in a procedure activation record on the stack; the
respective base register is SP (Stack Pointer). Offsets are positive integers.

The amount of storage needed for a variable (called its size) is determined by the variable's type.
The sizes of basic types are prescribed by the target computer's data representation. The following
holds for the RISC processor:

Type No. of bytes

BYTE, CHAR, BOOLEAN 1
INTEGER, REAL, SET, POINTER, PROCEDURE 4

The size of an array is the size of the element type multiplied by the number of elements. The size
of a record is the sum of the sizes of its fields.

A complication arises due to so-called alignment. By alignment is meant the adjustment of an
address to a multiple of the variable's size. Alignment is performed for variable addresses as well
as for record field offsets. The motivation for alignment is the avoidance of double memory
references for variables being "distributed" over two adjacent words. Proper alignment enhances
processing speed quite significantly. Variable allocation using alignment is shown by the example in
Fig. 12.2.

VAR b0: BYTE; int0: INTEGER; b1: BYTE; int1: INTEGER;

Figure 12.2. Alignment of variables

We note in passing that a reordering of the four variables lessens the number of unused bytes, as
shown in Fig. 12.3.

VAR int0, int1: INTEGER; b0, b1: BYTE;

Figure 12.3. Improved order of variables

Memory instructions compute the address as the sum of a register (base) and an offset constant.
Local variables use the stack pointer SP (R14) as base, global variables the static base SB (R13)
Every module has its own SB value, and therefore access to global (and imported) variables
requires two instructions, one for fetching the base value, and one for loading or storing data. If the
compiler can determine, whether the correct base value has already been loaded into the SB
register, the former instruction is omitted.

The first 7 sample patterns contain global variables only, and their base SB is assumed to hold the
appropriate value. Parameters of branch instructions denote jump distances from the instruction's
own location (PC-relative).

b1

b0

int1

int0

int b1

int1

b0

int0

int1

b1

int0

int1

b0

 16

Pattern 1: Assignment of constants. We begin with a simple example of assigning constants to
variables. The variables used in this example are global; their base register is SB. Each assignment
results in a single instruction. The constant is embedded within the instruction as a literal operand.

MODULE Pattern1;
 VAR ch: CHAR; 0
 k: INTEGER; 4
 x: REAL; 8
 s: SET; 12

BEGIN module entry code
 ch := "0"; 40000030 MOV R0 R0 30H
 B0D00000 STR R0 SB 0
 k := 10; 4000000A MOV R0 R0 10
 A0D00004 STR R0 SB 4
 x := 1.0; 60003F80 MOV' R0 R0 3F800000H
 A0D00008 STR R0 SB 8
 s := {0, 4, 8} 40000111 MOV R0 R0 111H
 A0D0000C STR R0 SB 12
END Pattern1. module exit code

Pattern 2: Simple expressions: The result of an expression containing operators is always stored in
a register before it is assigned to a variable or used in another operation.

Registers for intermediate results are allocated sequentially in ascending order R0, R1, ... , R11.
Integer multiplication and division by powers of 2 are represented by shifts (LSL, ASR). Similarly,
the modulus by a power of 2 is obtained by masking off leading bits. The operations of set union,
difference, and intersection are represented by logical operations (OR, AND).

MODULE Pattern2;
 VAR i, j, k, n: INTEGER; 0, 4, 8, 12
 x, y: REAL; 16, 20
 s, t, u: SET; 24, 28, 32

BEGIN i := (i + 1) * (i - 1); LDR R0 SB 0
 ADD R0 R0 1
 LDR R1 SB 0
 SUB R1 R1 1
 MUL R0 R0 R1
 STR R0 SB 0
 k := k DIV 17; LDR R0 SB 8
 DIV R0 R0 17
 STR R0 SB 8
 k := 8*n; LDR R0 SB 12
 LSL R0 R0 3
 STR R0 SB 8
 k := n DIV 2; LDR R0 SB 12
 ASR R0 R0 1
 STR R0 SB 8
 k := n MOD 16; LDR R0 SB 12
 AND R0 R0 15
 STR r0 SB 8
 x := -y / (x - 1.0); LDR R0 SB 16
 MOV' R1 R0 3F80H
 FSB R0 R0 R1
 LDR R1 SB 20
 FDV R0 R1 R0
 MOV R1 R0 0
 FSB R0 R1 R0
 STR R0 SB 16
 s := s + t * u LDR R0 SB 28
 LDR R1 SB 32

 17

 AND R0 R0 R1
 LDR R1 SB 24
 OR R0 R1 R0
 STR R0 SB 24
END Pattern2.

Pattern3: Indexed variables: References to elements of arrays make use of the possibility to add
an index value to an offset. The index must be present in a register and be multiplied by the size of
the array elements. (For integers with size 4 this is done by a shift of 2 bits). Then this index is
checked whether it lies within the bounds specified in the array's declaration. This is achieved by a
comparison, actually a subtraction, and a subsequent branch instruction causing a trap, if the index
is either negative or beyond the upper bound.

If the reference is to an element of a multi-dimensional array (matrix), its address computation
involves several multiplications and additions. The address of an element A[ik-1, ... , i1, i0] of a k-
dimensional array A with lengths nk-1, ... , n1, n0 is

adr(A) + ((... ((ik-1 * nk-2) + ik-2) * nk-3 + ...) * n1 + i1) * n0 + i0

Note that for index checks CMP is written instead of SUB to mark that the subtraction is merely a
comparison, that the result remains unused and only the condition flag registers hold the result.

MODULE Pattern3;
 VAR i, j, k, n: INTEGER; 0, 4, 8, 12
 a: ARRAY 10 OF INTEGER; 16
 x: ARRAY 10, 10 OF INTEGER; 56
 y: ARRAY 10, 10, 10 OF INTEGER; 456
BEGIN
 k := a[i]; LDR R0 SB 0
 CMP R1 R0 10
 BLHI R12
 LSL R0 R0 2
 ADD R0 SB R0
 LDR R0 R0 16
 STR R0 SB 8
 n := a[5]; LDR R0 SB 36
 STR R0 SB 12
 x[i, j] := 2; LDR R0 SB 0
 CMP R1 R0 10
 BLHI R12
 MUL R0 R0 40
 ADD R0 SB R0
 LDR R1 SB 4
 CMP R2 R1 10
 BLHI R12
 LSL R1 R1 2
 ADD R0 R0 R1
 MOV R1 R0 2
 STR R1 R0 56
 y[i, j, k] := 3; LDR R0 SB 0
 CMP R1 R0 10
 BLHI R12
 MUL R0 R0 400
 ADD R0 SB R0
 LDR R1 SB 4
 CMP R2 R1 10
 BLHI R12
 MUL R1 R1 40
 ADD R0 R0 R1
 LDR R1 SB 8
 CMP R2 R1 10

 18

 BLHI R12
 LSL R1 R1 2
 ADD R0 R0 R1
 MOV R1 R0 3
 STR R1 R0 456
 y[3, 4, 5] := 6 MOV R0 R0 6
 STR R0 SB 1836
END Pattern3.

Pattern 4: Record fields and pointers: Fields of records are accessed by computing the sum of the
record's (base) address and the field's offset. If the record variable is statically declared, the sum is
computed by the compiler.

MODULE Pattern4;
 TYPE Ptr = POINTER TO Node;
 Node = RECORD num: INTEGER; 0
 name: ARRAY 8 OF CHAR; 4
 next: Ptr 12
 END ;
 VAR p, q: Ptr; 12, 16
 r: Node; 20

BEGIN
 r.num := 10; MOV R0 R0 10
 STR R0 SB 20
 p.num := 6 LDR R0 SB 12 (p)
 MOV R1 R0 6
 STR R1 R0 0
 p.name[7] := "0"; LDR R0 SB 12
 MOV R1 R0 30H
 STR R1 R0 11 (4+7)
 p.next := q; LDR R0 SB 12
 LDR R1 SB 16
 STR R1 R0 12
 p.next.next := NIL LDR R0 SB 12 (p)
 LDR R0 R0 12 (p.next)
 MOV R1 R0 0 (NIL)
 STR R1 R0 12 (p.next.next)
END Pattern4.

Pattern 5: Boolean expressions, If statements: Conditional statements imply that parts of them are
skipped. This is done by the use of branch instructions whose operand specifies the distance of the
branch. The instructions refer to the condition-register as an implicit operand. Its value is
determined by a preceding instruction, typically a compare or a bit-test instruction.

The Boolean operators & and OR are purposely not defined as total functions, but rather by the
equations

p & q = if p then q else FALSE
p OR q = if p then TRUE else q

Consequently, Boolean operators must be translated into branches too. Evidently, branches
stemming from if statements and branches stemming from Boolean operators should be merged, if
possible. The resulting code therefore does not necessarily mirror the structure of the if statement
directly, as can be seen from the code in Pattern5. We must conclude that code generation for
Boolean expressions differs in some aspects from that for arithmetic expressions.

The example of Pattern5 is also used to exhibit the code resulting from the standard procedures
INC, DEC, INCL, and EXCL. These procedures provide an opportunity to use shorter code in those
cases where a single two-operand instruction suffices, i.e. when one of the arguments is identical
with the destination.

 19

MODULE Pattern5;
 VAR n: INTEGER; s: SET; 0, 4
BEGIN
 IF n = 0 THEN LDR R0 SB 0
 CMP R0 R0 0
 BNE 3
 INC(n) LDR R0 SB 0
 ADD R0 R0 1
 STR R0 SB 0
 END ;
 IF (n >= 0) & (n < 100) THEN LDR SB R0 ...
 LDR R0 SB 0 (n)
 CMP R0 R0 0
 BLT 6
 LDR R0 SB 0
 CMP R0 R0 100
 BGE 3
 DEC(n) LDR R0 SB 0
 SUB R0 R0 1
 STR R0 R0 0
 END ;
 IF ODD(n) OR (n IN s) THEN LDR SB R0 ...
 LDR R0 SB 0 (n)
 AND R0 R0 1
 BNE 5
 LDR R0 SB 4 (s)
 LDR R1 SB 0
 ADD R1 R1 1
 ROR R0 R0 R1
 BPL 2
 n := -1000 MOV R0 R0 -1000
 STR R0 SB 0
 END ;
 IF n < 0 THEN LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 0
 BGE 3
 s := {} MOV R0 R0 0 {}
 STR R0 SB 4
 B 17
 ELSIF n < 10 THEN LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 10
 BGE 3
 s := {0} MOV R0 R0 1
 STR R0 SB 4
 B 10
 ELSIF n < 100 THEN LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 100
 BGE 3
 s := {1} MOV R0 R0 2
 STR R0 SB 4
 B 3
 ELSE
 s := {2} MOV R0 R0 4
 LDR SB R0 ...
 STR R0 SB 4
 END
END Pattern5.

Pattern 6: While and repeat statements.

 20

MODULE Pattern6;
 VAR i: INTEGER;
BEGIN i := 0; MOV R0 R0 0
 STR R0 SB 0
 WHILE i < 10 DO LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 10
 BGE 4
 i := i + 2 LDR R0 SB 0
 ADD R0 R0 2
 STR R0 SB 0
 END ; B -8
 REPEAT i := i - 1 LDR SB R0 ...
 LDR R0 SB 0
 SUB R0 R0 1
 STR R0 SB 0
 UNTIL i = 0 LDR R0 SB 0
 CMP R0 R0 0
 BNE -7
END Pattern6.

Pattern 7: For statements.
MODULE Pattern7;
 VAR i, m, n: INTEGER;
BEGIN
 FOR i := 0 TO n-1 DO MOV R0 R0 0
 LDR R1 SB 8
 SUB R1 R1 1
 CMP LNK R0 R1
 BGT 7
 STR R0 SB 0
 m := 2*m LDR R0 SB 4
 LSL R0 R0 1
 STR R0 SB 4
 END LDR R0 SB 0
 ADD R0 R0 1
 B -11
END Pattern7.

Pattern 8: Proper procedures: Procedure bodies are surrounded by a prolog (entry code) and an
epilog (exit code). They reposition the stack pointer SP (see Chapter 6), which holds the address of
the procedure activation record on the stack. The immediate value of the first instruction indicates
the space taken by variables local to the procedure, rounded up to the next multiple of 4.

Procedure calls use a branch and link (BL) instruction. Parameters are loaded into registers prior to
the call and pushed on the stack after the call. Every parameter occupies a multiple of 4 bytes. In
the case of value parameters the value is loaded, and in the case of VAR-parameters, the
variable's address is loaded.

MODULE Pattern8;
 VAR i: INTEGER;

 PROCEDURE P(x: INTEGER; VAR y: INTEGER);
 VAR z: INTEGER;
 BEGIN SUB SP SP 16 adjust SP
 STR LNK SP 0 push ret adr
 STR R0 SP 4 push x
 STR R1 SP 8 push @y
 z := x; LDR R0 SP 4 x
 STR R0 SP 12 z
 y := z LDR R0 SP 12 z

 21

 LDR R1 SP 8 @y
 STR R0 R1 0 y
 END P; LDR LNK SP 0 pop ret adr
 ADD SP SP 16
 B R15

BEGIN P(5, i) MOV R0 R0 5
 ADD R1 SB 0 @i
 BL -14 call
END Pattern8.

Pattern 9: Function procedures. They are handled in exactly the same manner as proper
procedures, except that a result is returned in register R0. If the function is called in an expression
at a place where intermediate results are held in registers, these values are put onto the stack
before the call, and they are restored after return (not shown here).

MODULE Pattern9;
 VAR x: REAL;

 PROCEDURE F(x: REAL): REAL;
 BEGIN SUB SP SP 8
 STR LNK SP 0 push ret adr
 STR R0 SP 4 push x
 IF x >= 1.0 THEN LDR R0 SP 4
 MOV' R1 R0 3F80H
 FSB R0 R0 R1
 BLT 4
 x := F(F(x)) LDR R0 SP 4
 BL -9
 BL -10
 STR R0 SP 4
 END ;
 RETURN x LDR R0 SP 4
 END F; LDR LNK SP 0 pop ret adr
 ADD SP SP 8
 B R15
END Pattern9.

Pattern 10: Dynamic array parameters are passed by loading a descriptor on the stack, regardless
of whether they are value- or VAR- parameters. The descriptor consists of the actual variable's
address and the array's length. (Only one-dimensional dynamic arrays are handled).

Elements of dynamic arrays are accessed like those of static arrays. However, even when the index
is a constant, the check cannot be performed by the compiler.

MODULE Pattern10;
 VAR a: ARRAY 12 OF INTEGER;

 PROCEDURE P(x: ARRAY OF INTEGER);
 VAR i, n: INTEGER;
 BEGIN SUB SP SP 20
 STR LNK SP 0
 STR R0 SP 4 x
 STR R1 SP 8 x.len
 n := x[i]; LDR R0 SP 12 i
 LDR R1 SP 8 x.len
 CMP R2 R0 R1
 BLHI R12
 LSL R0 R0 2
 LDR R1 SP 4 x

 22

 ADD R0 R1 R0
 LDR R0 R0 0
 STR R0 SP 16
 x[i+1] := n+5 LDR R0 SP 12 i
 ADD R0 R0 1
 LDR R1 SP 8 x.len
 CMP R2 R0 R1
 BLHI R12
 LSL R0 R0 2
 LDR R1 SP 4 x
 ADD R0 R1 R0
 LDR R1 SP 16 n
 ADD R1 R1 5
 STR R1 R0 0
 END P; LDR LNK SP 0
 ADD SP SP 20
 B R15

BEGIN P(a); ADD R0 SB 0 a
 MOV R1 R0 12 a.len
 BL -29
END Pattern10.

Pattern 11: Sets. This code pattern exhibits the construction of sets. If the specified elements are
constants, the set value is computed by the compiler. Otherwise, sequences of move and shift
instructions are used. Since shift instructions do not check whether the shift count is within sensible
bounds, the results are unpredictable, if elements outside the range 0 .. 31 are involved.

MODULE Pattern11;
 VAR s: SET; m, n: INTEGER;
BEGIN
 s := {m}; LDR R0 SB 4 m
 MOV R1 R0 1
 LSL R0 R1 R0
 STR R0 SB 0 s
 s := {0 .. n}; LDR R0 SB 8 n
 MOV R1 R0 -2
 LSL R0 R1 R0
 XOR R0 R0 -1
 STR R0 SB 0
 s := {m .. 31}; LDR R0 SB 4 m
 MOV R1 R0 31
 MOV R2 R0 -2
 LSL R1 R2 R1
 MOV R2 R0 -1
 LSL R0 R2 R0
 XOR R0 R0 R1
 STR R0 SB 0 s
 s := {m .. n}; LDR R0 SB 4 m
 LDR R1 SB 8 n
 MOV R2 R0 -2
 LSL R1 R2 R1
 MOV R2 R0 -1
 LSL R0 R2 R0
 XOR R0 R0 R1
 STR R0 SB 0 s
 IF n IN {2, 3, 5, 7, 11, 13} THEN MOV R0 R0 28ACH
 LDR R1 SB 8
 ADD R1 R1 1
 ASR' R0 R0 R1
 BPL 2

 23

 m := 1 MOV R0 R0 1
 STR R0 SB 4 m
 END
END Pattern11.

Pattern 12: Imported variables and procedures: When a procedure is imported from another
module, its address is unavailable to the compiler. Instead, the procedure is identified by a number
obtained from the imported module's symbol file. In place of the offset, the branch instruction holds
(1) the number of the imported module, (2) the number of the imported procedure, and (3) a link in
the list of BL instructions calling an external procedure. This list is traversed by the linking loader,
that computes the actual offset (fixup, see Chapter 6).

Imported variables are also referenced by a variable's number. In general, an access required two
instructions. The first loads the static base register SB from a global table with the address of that
module's data section. The module number of the imported variable serves as index. The second
instruction loads the address of the variable, using the actual offset fixed up by the loader.

In the following example, modules Pattern12a and Pattern12b both export a procedure and a
variable. They are referenced from the importing module Pattern12c.

MODULE Pattern12a;
 VAR k*: INTEGER;

 PROCEDURE P*;
 BEGIN k := 1
 END P;

END Pattern12a.

MODULE Pattern12b;
 VAR x*: REAL;

 PROCEDURE Q*;
 BEGIN x := 1
 END Q;

END Pattern12b.

MODULE Pattern12c;
 IMPORT Pattern12a, Pattern12b;

 VAR i: INTEGER; y: REAL;
BEGIN
 i := Pattern12a.k; 8D10xxxx LDR SB 1 link Pattern12a
 80D00000 LDR R0 SB 0 Pattern12a.k
 8D00xxxx LDR SB 0 link Pattern12c
 A0D00000 STR R0 SB 0 Pattern12c.i
 y := Pattern12b.x; 8D20xxxx LDR SB 2 link Pattern12b
 80D00000 LDR R0 SB 0 Pattern12b.x
 8D00xxxx LDR SB 0 link Pattern12c
 A0D00004 STR R0 SB 4 Pattern12c.y
END Pattern12c.

Pattern 13: Record extensions with pointers: Fields of a record type R1, which is declared as an
extension of a type R0, are simply appended to the fields of R0, i.e. their offsets are greater than
those of the fields of R0. When a record is statically declared, its type is known by the compiler. If
the record is referenced via a pointer, however, this is not the case. A pointer bound to a base type
R0 may well refer to a record of an extension R1 of R0. Type tests (and type guards) allow to test
for the actual type. This requires that a type can be identified at the time of program execution.
Because the language defines name equivalence instead of structural equivalence of types, a type
may be identified by a number. We use the address of a unique type descriptor for this purpose.

 24

Therefore, type tests consist of a simple address comparison which is very fast. Type descriptors
are stored in the module's area for data. Their address is called type tag. The tag of a (dynamically
allocated) variable is stored as a prefix to its record (with offset -8).

A type descriptor contains - in addition to information stored for use by the garbage collector - a
table of tags of all its base types. If, for instance, a type R2 is an extension of R1 which is an
extension of R0, the descriptor of R2 contains the tags of R1 and R0 as shown in Fig. 12.4. The
table has a fixed number of 3 entries.

Figure 12.4 Type descriptors

A type test of the form p IS T then, consists of a comparison of the type tag of p^ at address p-8
with the tag held in the descriptor of T at the extension level of the type of p^. A type guard p(T) is
synonymous to the statement

IF ~(p IS T) THEN abort END

The following example features 3 record types with associated pointer types, and hence also 3 type
descriptors. Each descriptor is 5 words long. Their addresses, and therefore their tags, are 0, 20,
and 40 respectively.

 0 00000020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
20 00000020 00014006 FFFFFFFF FFFFFFFF FFFFFFFF
40 00000020 00014005 00028001 FFFFFFFF FFFFFFFF

MODULE Pattern13;
 TYPE
 P0 = POINTER TO R0;
 P1 = POINTER TO R1;
 P2 = POINTER TO R2;
 R0 = RECORD x: INTEGER END ;
 R1 = RECORD (R0) y: INTEGER END ;
 R2 = RECORD (R1) z: INTEGER END ;
 VAR
 p0: P0; 60
 p1: P1; 64
 p2: P2; 68
BEGIN
 p0.x := 0; LDR R0 SB 60
 MOV R1 R0 0 p0.x
 STR R1 R0 0 no type check
 p1.y := 1; LDR R0 SB 64
 MOV R1 R0 1
 STR R1 R0 4 p1.y
 p0(P1).y := 3; LDR R0 SB 60 p0
 LDR R1 R0 -8 tag(p0)
 LDR R1 R1 4
 ADD R2 SB 20 TD P1
 CMP R3 R2 R1

size

pointer offsets

size

pointer offsets

size

pointer offsets

R0R2 R1

 25

 BLNE R12
 MOV R1 R0 3
 STR R1 R0 4 p0.z
 p0(P2).z := 5; LDR R0 SB 60 p0
 LDR R1 R0 -8 tag(p0)
 LDR R1 R1 8
 ADD R2 SB 40 TD P2
 CMP R3 R2 R1
 BLNE R12
 MOV R1 R0 5
 STR R1 R0 8 p0.z
 IF p1 IS P2 THEN LDR R0 SB 64 p1
 LDR R1 R0 -8 tag(p1)
 LDR R1 R1 8
 ADD R2 SB 40 TD P2
 CMP R3 R2 R1
 BNE 2
 p0 := p2 LDR R0 SB 68
 STR R0 SB 60
 END
END Pattern13.

Pattern 14: Record extensions as VAR parameters: Records occurring as VAR-parameters may
also require a type test at program execution time. This is because VAR-parameters effectively
constitute hidden pointers. Type tests and type guards on VAR-parameters are handled in the
same way as for variables referenced via pointers, with a slight difference, however. Statically
declared record variables may be used as actual parameters, and they are not prefixed by a type
tag. Therefore, the tag has to be supplied together with the variable's address when the procedure
is called, i.e. when the actual parameter is established. Record structured VAR-parameters
therefore consist of address and type tag. This is similar to dynamic array descriptors consisting of
address and length.

 0 00000020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
20 00000020 00014006 FFFFFFFF FFFFFFFF FFFFFFFF

MODULE Pattern14;
 TYPE
 R0 = RECORD a, b, c: INTEGER END ;
 R1 = RECORD (R0) d, e: INTEGER END ;
 VAR
 r0: R0; 40
 r1: R1; 52

 PROCEDURE P(VAR r: R0);
 BEGIN ...

 r.a := 1; LDR R1 SP 4 r
 STR R0 R1 0 r.a
 r(R1).d := 2 LDR R0 SP 8 tag(r)
 LDR R0 R0 4
 ADD R1 SB 20 R1
 CMP R2 R1 R0
 BLNE R12
 MOV R0 R0 2
 LDR R1 SP 4 r
 STR R0 R1 12 r.d
 END P; ...

BEGIN ...
 P(r0); ADD R0 SB 40 r0
 ADD R1 SB 0 tag(R0)
 BL P

 26

 P(r1) ADD R0 SB 52 r1
 ADD R1 SB 20 tag(R1)
 BL P
END Pattern14. ...

Pattern 15: Array assignments and strings.
MODULE Pattern15;
 VAR s0, s1: ARRAY 32 OF CHAR;

 PROCEDURE P(x: ARRAY OF CHAR);
 END P;

BEGIN s0 := "ABCDEF"; ADD R0 SB 0 @s0
 ADD R1 SB 64 @"ABCDEF"
 LDR R2 R1 0
 ADD R1 R1 4
 STR R2 R0 0
 ADD R0 R0 4
 ASR R2 R2 24 test for 0X
 BNE -6

 s0 := s1; ADD R0 SB 0 @s0
 ADD R1 SB 32 @s1
 MOV R2 R0 8 len
 LDR R3 R1 0
 ADD R1 R1 4
 STR R3 R0 0
 ADD R0 R0 4
 SUB R2 R2 1
 BNE -6

 P(s1); ADD R0 SB 32 @s1
 MOV R1 R0 32 len
 BL -38 P

 P("012345"); ADD R0 SB 72 @"012345"
 MOV R1 R0 7 len (incl 0X)
 BL -42 P

 P("%") ADD R0 SB 80 @"%"
 MOV R1 R0 2 len
 BL -46 P
END Pattern15.

Pattern 16: Predeclared procedures.
MODULE Pattern16;
 VAR m, n: INTEGER;
 x: REAL; u: SET;
 a, b: ARRAY 10 OF INTEGER;
 s, t: ARRAY 16 OF CHAR;
BEGIN
 INC(m); ADD R0 SB 0 @m
 LDR R1 R0 0
 ADD R1 R1 1
 STR R1 R0 0
 DEC(n, 10); ADD R0 SB 4 @n
 LDR R1 R0 0
 SUB R1 R1 10
 STR R1 R0 0
 INCL(u, 3); ADD R0 SB 12 @u
 LDR R1 R0 0
 OR R1 R1 8 {3}
 STR R1 R0 0

 27

 EXCL(u, 7); ADD R0 SB 12 @u
 LDR R1 R0 0
 AND R1 R1 -129 -{7}
 STR R1 R0 0
 ASSERT(m < n); LDR R0 SB 0
 LDR R1 SB 4
 CMP R0 R0 R1
 BLGE R12
 UNPK(x, n); LDR R0 SB 8 x
 ASR R1 R0 23
 SUB R1 R1 127
 STR R1 SB 4 n
 LSL R1 R1 23
 SUB R0 R0 R1
 STR R0 SB 8 x
 PACK(x, n); LDR R0 SB 8 x
 LDR R1 SB 4 n
 LSL R1 R1 23
 ADD R0 R0 R1
 STR R0 SB 8 x
 s := "0123456789"; ADD R0 SB 96 @s
 ADD R1 SB 128 adr of string
 LDB R2 R1 0 loop
 ADD R1 R1 4
 STB R2 R0 0
 ADD R0 R0 4
 ASR R2 R2 24
 BNE -6
 IF s < t THEN ADD R0 SB 96 @s
 ADD R1 SB 112 @t
 LDB R2 R0 0 loop
 ADD R0 R0 1
 LDB R3 R1 0
 ADD R1 R1 1
 CMP R4 R2 R3
 BNE 2
 CMP R4 R2 0
 BNE -8
 BGE 3

 m := 1 MOV R0 R0 1
 STR R0 SB 0 m

 END
END Pattern16.

Pattern 17: Predeclared functions.
MODULE Pattern17;
 VAR m, n: INTEGER;
 x, y: REAL;
 b: BOOLEAN; ch: CHAR;
BEGIN
 n := ABS(m); LDR R0 SB 0 m
 CMP R0 R0 0
 BGE 2
 MOV R1 R0 0
 SUB R0 R1 R0
 STR R0 SB 4 n
 y := ABS(x); LDR R0 SB 8 x
 LSL R0 R0 1

 28

 ROR R0 R0 1
 STR R0 SB 12 y
 b := ODD(n); LDR R0 SB 4 n
 AND R0 R0 1
 BEQ 2
 MOV R0 R0 1
 B 1
 MOV R0 R0 0
 STB R0 SB 16 b
 n := ORD(ch); LDB R0 SB 17 ch
 STR R0 SB 4 n
 n := FLOOR(x); LDR R0 SB 8 x
 MOV' R1 R0 4B00H
 FAD" R0 R0 R1 floor
 STR R0 SB 4 n
 y := FLT(m); LDR R0 SB 0 m
 MOV' R1 R0 4B00H
 FAD' R0 R0 R1 float
 STR R0 SB 12 y
 n := LSL(m, 3); LDR R0 SB 0 m
 LSL R0 R0 3
 STR R0 SB 4 n
 n := ASR(m, 8); LDR R0 SB 0
 ASR R0 R0 8
 STR R0 SB 4
 m := ROR(m, n); LDR R0 SB 0
 LDR R1 SB 4
 ROR R0 R0 R1
 STR R0 SB 0
END Pattern17.

12.3. Internal data structures and module interfaces

12.3.1. Data structures

In Section 12.1 it was explained that declarations inherently constitute context-dependence of the
translation process. Although parsing still proceeds on the basis of a context-free syntax and relies
on contextual information only in a few isolated instances, information provided by declarations
affects the generated code significantly. During the processing of declarations, their information is
transferred into the "symbol table", a data structure of considerable complexity, from where it is
retrieved for the generation of code.

This dynamic data structure is defined in module ORB in terms of two record types called Object
and Struct. These types pervade all other modules with the exception of the scanner. They are
therefore explained before further details of the compiler are discussed (see module ORB below).

For each declared identifier an instance of type Object is generated. The record holds the identifier
and the properties associated with the identifier given in its declaration. Since Oberon is a statically
typed language, every object has a type. It is represented in the record by its typ field, which is a
pointer to a record of type Struct. Since many objects may be of the same type, it is appropriate to
record the type's attributes only once and to refer to them via a pointer. The properties of type
Struct will be discussed below.

The kind of object which a table entry represents is indicated by the field class. Its values are
denoted by declared integer constants: Var indicates that the entry describes a variable, Con a
constant, Fld a record field, Par a VAR-parameter, and Proc a procedure. Different kinds of entries
carry different attributes. A variable or a parameter carries an address, a constant has a value, a
record field has an offset, and a procedure has an entry address, a list of parameters, and a result
type. For each class the introduction of an extended record type would seem advisable. This was
not done, however, for three reasons. First, the compiler was first formulated in (a subset of)

 29

Modula-2 which does not feature type extension. Second, not making use of type extensions would
make it simpler to translate the compiler into other languages for porting the language to other
computers. And third, all extensions were known at the time the compiler was planned. Hence
extensibility provided no argument for the introduction of a considerable variety of types. The
simplest solution lies in using the multi-purpose fields val and dsc for class-specific attributes. For
example, val holds an address for variables, parameters, and procedures, an offset for record
fields, and a value for constants.

The definition of a type yields a record of type Struct, regardless of whether it occurs within a type
declaration, in which case also a record of type Object (class = Typ) is generated, or in a variable
declaration, in which case the type remains anonymous. All types are characterized by a form and
a size. A type is either a basic type or a constructed type. In the latter case it refers to one or more
other types. Constructed types are arrays, records, pointers, and procedural types. The attribute
form refers to this classification. Its value is an integer

Just as different object classes are characterized by different attributes, different forms have
different attributes. Again, the introduction of extensions of type Struct was avoided. Instead, some
of the fields of type Struct remain unused in some cases, such as for basic types, and others are
used for form-specific attributes. For example, the attribute base refers to the element type in the
case of an array, to the result type in the case of a procedural type, to the type to which a pointer is
bound, or to the base type of a (extended) record type. The attribute dsc refers to the parameter list
in the case of a procedural type, or to the list of fields in the case of a record type.

As an example, consider the following declarations. The corresponding data structure is shown in
Fig. 12.5. For details, the reader is referred to the program listing of module ORB and the
respective explanations.

CONST N = 100;
TYPE Ptr = POINTER TO Rec;
 Rec = RECORD n: INTEGER; p, q: Ptr END ;
VAR k: INTEGER;
 a: ARRAY N OF INTEGER;
PROCEDURE P(x: INTEGER): INTEGER;

 30

Figure 12.5. Representation of declarations

Only entries representing constructed types are generated during compilation. An entry for each
basic type is established by the compiler's initialization. It consists of an Object holding the standard
type's identifier and a Struct indicating its form, denoted by one of the values Byte, Bool, Char, Int,
Real, or Set. The object records of the basic types are anchored in global pointer variables in
module ORB (which actually should be regarded as constants).

Not only are entries created upon initialization for basic types, but also for all standard procedures.
Therefore, every compilation starts out with a symbol table reflecting all standard, pervasive
identifiers and the objects they stand for.

We now return to the subject of Objects. Whereas objects of basic classes (Const, Var, Par, Fld,
Typ, SProc, SFunc and Mod) directly reflect declared identifiers and constitute the context in which
statements and expressions are compiled, compilations of expressions typically generate

name class

val
type

next
dsc

form size

typob base

nofpa len

type

dsc

Object Type

N Con

100

Ptr Typ

Rec Typ

k Var

0

a Var

4

P Con

NIL

Pointer 4

Record 12

 NIL

0 n Fld

0

p Fld

4

q Fld

8

NIL

Array 400

NIL

 100

Proc 4

NIL

1

Int 4

 dsc

x Var

4

NIL
intType

dsc

 31

anonymous entities of additional, non-basic modes. Such entities reflect selectors, factors, terms,
etc., i.e. constituents of expressions and statements. As such, they are of a transitory nature and
hence are not represented by records allocated on the heap. Instead, they are represented by
record variables local to the processing procedures and are therefore allocated on the stack. Their
type is called Item and is a slight variation of the type Object. Items are not referenced via pointers.

Let us assume, for instance, that a term x*y is parsed. This implies that the operator and both
factors have been parsed already. The factors x and y are represented by two variables of type
Item of Var mode. The resulting term is again described by an item, and since the product is
transitory, i.e. has significance only within the expression of which the term is a constituent, it is to
be held in a temporary location, in a register. In order to express that an item is located in a
register, a new, non-basic mode Reg is introduced.

Effectively, all non-basic modes reflect the target computer's architecture, in particular its
addressing modes. The more addressing modes a computer offers, the more item modes are
needed to represent them. The additional item modes required by the RISC processor are. They
are declared in module ORG:

Reg direct register mode
RegI indirect register mode
Cond condition code mode

The use of the types Object, Item, and Struct for the various modes and forms, and the meaning of
their attributes are explained in the following tables:

Objects: Items:

 class val | a b r

0 Undef |
1 Const val | val
2 Var adr | adr base
3 Par adr | adr off
4 Fld off | off
5 Typ TDadr | TDadr modno
6 SProc num
7 SFunc num
8 Mod

10 Reg | regno
11 RegI | off regno
12 Cond | Tjmp Fjmp condition code

Structures:

 form nofpar len dsc base

 7 Pointer base type
10 ProcTyp nofpar param result type
12 Array nofel element typ
13 Record ext lev desc adr fields extension type

Items have an attribute called lev which is part of the address of the item. Positive values denote
the level of nesting of the procedure in which the item is declared; lev = 0 implies a global object.
Negative values indicate that the object is imported from the module with number -lev.
The three types Object, Item, and Struct are defined in module ORB, which also contains
procedures for accessing the symbol table.

12.3.2. Module interfaces

 32

Before embarking on a presentation of the compiler's main module, the parser, an overview of its
remaining modules is given in the form of their interfaces. The reader is invited to refer to them
when studying the parser.

The interface of the scanner module ORS is simple. It defines the numeric values of all symbols.
But its chief constituent is procedure Get. Each call yields the next symbol from the source text,
identified by an integer. Global variables represent attributes of the read symbol in certain cases. If
a number was read, ival or rval hold its numeric value. If an identifier or a string was read, str holds
the ASCII values of the characters read.

Procedure Mark serves to generate a diagnostic output indicating a brief diagnostic and the
scanner's current position in the source text. This procedure is located in the scanner, because only
the scanner has access to its current position. Mark is called from all other modules.

DEFINITION ORS; (*Scanner*)
 IMPORT Texts, Oberon;

 TYPE Ident = ARRAY 32 OF CHAR;
 VAR ival, slen: INTEGER;
 rval: REAL;
 id: Ident;
 str: ARRAY 256 OF CHAR;
 errcnt: BOOLEAN;

 PROCEDURE Mark (msg: ARRAY OF CHAR);
 PROCEDURE Get (VAR sym: INTEGER);
 PROCEDURE Init (source: Texts.Text; pos: INTEGER);
END ORS.

Module ORB defines the basic data structures representing declared objects and their types. It also
contains procedures for accessing these structures. NewObj serves to insert a new identifier, and it
returns a pointer to the allocated object. ThisObj returns the pointer to the object whose name
equals the global scanner variable ORS.id. Thisimport and thisfield deliver imported objects and
record fields with names equal to ORS.id.

Procedure Import serves to read the specified symbol file and to enter its identifier in the symbol
table (class = Mod). Finally, Export generates the symbol file of the compiled module, containing
descriptions of all objects and structures marked for export.

DEFINITION ORB; (*Base table handler*)
 TYPE
 Object = POINTER TO ObjDesc;
 Type = POINTER TO TypeDesc;
 ObjDesc = RECORD
 class, lev, exnp: INTEGER;
 expo, rdo: BOOLEAN;
 next, dsc: Object;
 type: Type;
 name: ORS.Ident;
 val: INTEGER
 END ;
 TypeDesc = RECORD
 form, ref, mno: INTEGER; (*ref is used for import/export only*)
 nofpar: INTEGER; (*for records: extension level*)
 len: INTEGER; (*for records: address of descriptor*)
 dsc, typobj: Object;
 base: Type;
 size: INTEGER
 END ;

 VAR topScope: Object;
 byteType, boolType, charType, intType, realType, setType,
 nilType, noType, strType: Type;

 33

 PROCEDURE Init;
 PROCEDURE Close;
 PROCEDURE NewObj (VAR obj: Object; id: ORS.Ident; class: INTEGER);
 PROCEDURE thisObj (): Object;
 PROCEDURE thisimport (mod: Object): Object;
 PROCEDURE thisfield (rec: Type): Object;
 PROCEDURE OpenScope;
 PROCEDURE CloseScope;
 PROCEDURE Import (VAR modid, modid1: ORS.Ident);
 PROCEDURE Export (VAR modid: ORS.Ident;
 VAR newSF: BOOLEAN; VAR key: INTEGER);
END ORB.

Module ORG contains the procedures for code generation. The names of these procedures indicate
the respective constructs for which code is to be produced. Note that an individual code generator
procedure is provided for every standard, predefined procedure. This is necessary, because they
generate in-line code.

DEFINITION ORG;
 CONST WordSize* = 4;
 TYPE Item* = RECORD
 mode*: INTEGER;
 type*: ORB.Type;
 a*, b*, r: INTEGER;
 rdo*: BOOLEAN (*read only*)
 END ;
 VAR pc: INTEGER;

 PROCEDURE MakeConstItem*(VAR x: Item; typ: ORB.Type; val: INTEGER);
 PROCEDURE MakeRealItem*(VAR x: Item; val: REAL);
 PROCEDURE MakeStringItem*(VAR x: Item; len: INTEGER);
 PROCEDURE MakeItem*(VAR x: Item; y: ORB.Object; curlev: INTEGER);
 PROCEDURE Field*(VAR x: Item; y: ORB.Object); (* x := x.y *)
 PROCEDURE Index*(VAR x, y: Item); (* x := x[y] *)
 PROCEDURE DeRef*(VAR x: Item);
 PROCEDURE BuildTD*(T: ORB.Type; VAR dc: INTEGER);
 PROCEDURE TypeTest*(VAR x: Item; T: ORB.Type; varpar, isguard: BOOLEAN);

 PROCEDURE Not*(VAR x: Item); (* x := ~x, Boolean operators *)
 PROCEDURE And1*(VAR x: Item); (* x := x & *)
 PROCEDURE And2*(VAR x, y: Item);
 PROCEDURE Or1*(VAR x: Item); (* x := x OR *)
 PROCEDURE Or2*(VAR x, y: Item);

 PROCEDURE Neg*(VAR x: Item); (* x := -x, arithmetic operators *)
 PROCEDURE AddOp*(op: LONGINT; VAR x, y: Item); (* x := x +- y *)
 PROCEDURE MulOp*(VAR x, y: Item); (* x := x * y *)
 PROCEDURE DivOp*(op: INTEGER; VAR x, y: Item); (* x := x op y *)
 PROCEDURE RealOp*(op: INTEGER; VAR x, y: Item); (* x := x op y *)

 PROCEDURE Singleton*(VAR x: Item); (* x := {x}, set operators *)
 PROCEDURE Set*(VAR x, y: Item); (* x := {x .. y} *)
 PROCEDURE In*(VAR x, y: Item); (* x := x IN y *)
 PROCEDURE SetOp*(op: INTEGER; VAR x, y: Item); (* x := x op y *)

 PROCEDURE IntRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)
 PROCEDURE SetRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)
 PROCEDURE RealRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)
 PROCEDURE StringRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)

 PROCEDURE StrToChar*(VAR x: Item); (*assinments*)
 PROCEDURE Store*(VAR x, y: Item); (* x := y *)
 PROCEDURE StoreStruct*(VAR x, y: Item); (* x := y *)
 PROCEDURE CopyString*(VAR x, y: Item); (*from x to y*)

 34

 PROCEDURE VarParam*(VAR x: Item; ftype: ORB.Type); (*parameters*)
 PROCEDURE ValueParam*(VAR x: Item);
 PROCEDURE OpenArrayParam*(VAR x: Item);
 PROCEDURE StringParam*(VAR x: Item);

 PROCEDURE For0*(VAR x, y: Item); (*For Statements*)
 PROCEDURE For1*(VAR x, y, z, w: Item; VAR L: LONGINT);
 PROCEDURE For2*(VAR x, y, w: Item);

 (* Branches, procedure calls, procedure prolog and epilog *)
 PROCEDURE Here*(): LONGINT;
 PROCEDURE FJump*(VAR L: LONGINT);
 PROCEDURE CFJump*(VAR x: Item);
 PROCEDURE BJump*(L: LONGINT);
 PROCEDURE CBJump*(VAR x: Item; L: LONGINT);
 PROCEDURE Fixup*(VAR x: Item);
 PROCEDURE PrepCall*(VAR x: Item; VAR r: LONGINT);
 PROCEDURE Call*(VAR x: Item; r: LONGINT);
 PROCEDURE Enter*(parblksize, locblksize: LONGINT; int: BOOLEAN);
 PROCEDURE Return*(form: INTEGER; VAR x: Item; size: LONGINT; int: BOOLEAN);

 (* In-line code procedures*)
 PROCEDURE Increment*(upordown: LONGINT; VAR x, y: Item);
 PROCEDURE Include*(inorex: LONGINT; VAR x, y: Item);
 PROCEDURE Assert*(VAR x: Item);
 PROCEDURE New*(VAR x: Item);
 PROCEDURE Pack*(VAR x, y: Item);
 PROCEDURE Unpk*(VAR x, y: Item);
 PROCEDURE Led*(VAR x: Item);
 PROCEDURE Get*(VAR x, y: Item);
 PROCEDURE Put*(VAR x, y: Item);
 PROCEDURE Copy*(VAR x, y, z: Item);
 PROCEDURE LDPSR*(VAR x: Item);
 PROCEDURE LDREG*(VAR x, y: Item);

 (*In-line code functions*)
 PROCEDURE Abs*(VAR x: Item);
 PROCEDURE Odd*(VAR x: Item);
 PROCEDURE Floor*(VAR x: Item);
 PROCEDURE Float*(VAR x: Item);
 PROCEDURE Ord*(VAR x: Item);
 PROCEDURE Len*(VAR x: Item);
 PROCEDURE Shift*(fct: LONGINT; VAR x, y: Item);
 PROCEDURE ADC*(VAR x, y: Item);
 PROCEDURE SBC*(VAR x, y: Item);
 PROCEDURE UML*(VAR x, y: Item);
 PROCEDURE Bit*(VAR x, y: Item);
 PROCEDURE Register*(VAR x: Item);
 PROCEDURE H*(VAR x: Item);
 PROCEDURE Adr*(VAR x: Item);
 PROCEDURE Condition*(VAR x: Item);

 PROCEDURE Open*(v: INTEGER);
 PROCEDURE SetDataSize*(dc: LONGINT);
 PROCEDURE Header*;
 PROCEDURE Close*(VAR modid: ORS.Ident; key, nofent: LONGINT);
END ORG.

12. 4. The Parser
The main module ORP constitutes the parser. Its single command Compile - at the end of the
program listing - identifies the source text according to the Oberon command conventions. It then
calls procedure Module with the identified source text as parameter. The command forms are:

 35

ORP.Compile @ The most recent selection identifies the beginning of the source text.
ORP.Compile ^ The most recent selection identifies the name of the source file.
ORP.Compile f0 f1 ... ~ f0, f1, ... are the names of source files.

File names and the characters @ and ^ may be followed by an option specification /s. Option s
enables the compiler to overwrite an existing symbol file, thereby invalidating clients.

The parser is designed according to the proven method of top-down, recursive descent parsing with
a look-ahead of a single symbol. The last symbol read is represented by the global variable sym.
Syntactic entities are mirrored by procedures of the same name. Their goal is to recognize the
specified construct in the source text. The start symbol and corresponding procedure is Module.
The principal parser procedures are shown in Fig. 12.6., which also exhibits their calling hierarchy.
Loops in the diagram indicate recursion in the syntactic definition.

Figure 12.6 Parser procedure hierarchy

The rule of parsing strictly based on a single-symbol look-ahead and without reference to context is
violated in three places. The prominent violation occurs in statements. If the first symbol of a
statement is an identifier, the decision of whether an assignment or a procedure call is to be
recognized is based on contextual information, namely the class of the identified object. The
second violation occurs in qualident; if the identifier x preceding a period denotes a module, it is
recognized together with the subsequent identifier as a qualified identifier. Otherwise x supposedly
denotes a record variable. The third violation is made in procedure selector; if an identifier is
followed by a left parenthesis, the decision of whether a procedure call or a type guard is to be
recognized is again made on the basis of contextual information, namely the mode of the identified
object.

A fairly large part of the program is devoted to the discovery of errors. Not only should they be
properly diagnosed. A much more difficult requirement is that the parsing process should continue
on the basis of a good guess about the structure that the text should most likely have. The parsing
process must continue with some assumption and possibly after skipping a short piece of the

Module

ProcDecl StatSeq

Type ProcType

ArrayType RecType

Declarations

FPSec

FormalTyp

expression

term

factorParamList

set

SimpleExp

element

Parameter

 36

source text. Hence, this aspect of the parser is mostly based on heuristics. Incorrect assumptions
about the nature of a syntactic error lead to secondary error diagnostics. There is no way to avoid
them. A reasonably good result is obtained by the fact that procedure ORS.Mark inhibits an error
report, if it lies less than 10 characters ahead of the last one. Also, the language Oberon is
designed with the property that most large constructs begin with a unique symbol, such as IF,
WHILE, CASE, RECORD, etc. These symbols facilitate the recovery of the parsing process in the
erroneous text. More problematic are open constructs which neither begin nor end with key
symbols, such as types, factors, and expressions. Relying on heuristics, the source text is skipped
up to the first occurrence of a symbol which may begin a construct that follows the one being
parsed. The employed scheme may not be the best possible, but it yields quite acceptable results
and keeps the amount of program devoted to the handling of erroneous texts within justifiable
bounds.

Besides the parsing of text, the Parser also performs the checking for type consistency of objects.
This is based on type information held in the global table, gained during the processing of
declarations, which is also handled by the routines which parse. Thereby an unjustifiably large
number of very short procedures is avoided. However, the strict target-computer independence of
the parser is violated slightly: Information about variable allocation strategy including alignment, and
about the sizes of basic types is used in the parser module. Whereas the former violation is
harmless, because the allocation strategy is hardly controversial, the latter case constitutes a
genuine target-dependence embodied in a number of explicitly declared constants. Mostly these
constants are contained in the respective type definitions, represented by records of type Type
initialized by ORB. The following procedures allocate objects and generate elements of the symbol
table:

Declarations Object(Con), Object(Typ), Object(Var)
ProcedureDeclaration Object(xProc)
FormalType Object(Var), Object(Par)
ORB.Import Object(Mod)
RecordType Object(Fld), Type(Record)
ArrayType Type(Array)
ProcedureType Type(ProcTyp)
Type Type(Pointer)
FormalType Type(Array)

An inherently nasty subject is the treatment of forward references in a single-pass compiler. In
Oberon, there are two such cases:

1. Forward declarations of procedures. They have been eliminated from the revision of the Oberon
language in the year 2007 as they should be avoided if ever possible. If it is impossible, a remedy is
to declare a variable of the given procedure type, and assign the procedure to be forwarded to this
variable. The nastiness of procedure forward declarations originates in the necessity to specify
parameters and result type in the forward declaration. These must be repeated in the actual
procedure declaration, and one expects that a compiler verifies the equality (or equivalence) of the
two declarations. This is a heavy burden for a case that very rarely occurs.

2. Forward declarations of pointer types also constitutes a nasty exception, but its exclusion would
be difficult to justify. If in a pointer declaration the base type (to which the pointer is bound) is not
found in the symbol table, a forward reference is therefore automatically assumed. An entry for the
pointer type is generated anyway (see procedure Type) and an element is inserted in the list of
pointer base types to be fixed up. This list is headed by the global variable pbsList. When later in
the text a declaration of a record type is encountered with the same identifier, the forward entry is
recognized and the proper link is established (see procedure Declarations).

The compiler must check for undefined forward references when the current declaration scope is
closed. This check is performed at the end of procedure Declarations.

 37

The with statement had been eliminated from the language in its revision of 2007. Here it reappears
in the form of a case statement, whose cases are not labelled by integers, but rather by types. What
formerly was written as

IF x IS T1 THEN
 WITH x: T1 DO ... x ... END
ELSIF x IS T2 THEN
 WITH x: T2 DO ... x ... END
ELSIF ...
END

is now written more simply and more efficiently as

CASE x OF
 T1: ... x ... |
 T2: ... x ... |
...
END

where T1 and T2 are extensions of the type T0 of the case variable x. Compilation of this form of
case statement merges the regional type guard of the former with statements with the type test of
the former if statements. This case statement represents the only case where a symbol table entry -
the type of x - is modified during compilation of statements. When the end of the with statement is
reached, the change must be reverted.

12.5. The scanner
The scanner module ORS embodies the lexicographic definitions of the language, i.e. the definition
of abstract symbols in terms of characters. The scanner's substance is procedure Get, which scans
the source text and, for each call, identifies the next symbol and yields the corresponding integer
code. It is most important that this process be as efficient as possible. Procedure Get recognizes
letters indicating the presence of an identifier (or reserved word), and digits signalling the presence
of a number. Also, the scanner recognizes comments and skips them. The global variable ch
stands for the last character read.

A sequence of letters and digits may either denote an identifier or a key word. In order to determine
which is the case, a search is made in a table containing all key words for each would-be identifier.
This table is sorted alphabetically and according to the length of reserved words. It is initialized
when the compiler is loaded.

The presence of a digit signals a number. Procedure Number first scans the subsequent digits (and
letters) and stores them in a buffer. This is necessary, because hexadecimal numbers are denoted
by the postfix letter H (rather than a prefix character). The postfix letter X specifies that the digits
denote a character.

There exists one case in the language Oberon, where a look-ahead of a single character does not
suffice to identify the next symbol. When a sequence of digits is followed by a period, this period
may either be the decimal point of a real number, or it may be the first element of a range symbol (
..). Fortunately, the problem can be solved locally as follows: If, after reading digits and a period, a
second period is present, the number symbol is returned, and the look-ahead variable ch is
assigned the special value 7FX. A subsequent call of Get then delivers the range symbol.
Otherwise the period after the digit sequence belongs to the (real) number.

12.6. Searching the symbol table, and handling symbol files
12.6.1. The structure of the symbol table

The symbol table constitutes the context in which statements and expressions are parsed. Each
procedure establishes a scope of visibility of local identifiers. The records registering identifiers
belonging to a scope are linked as a linear list. They are of type Object. Each object has a type.

 38

Types are represented by records of type Type. These two types pervade the entire compiler, and
they are defined as follows:

TYPE Object = POINTER TO ObjDesc;
 Type = POINTER TO TypeDesc;

 ObjDesc = RECORD
 class, lev, exno: INTEGER;
 expo, rdo: BOOLEAN; (*exported / read-only*)
 next, dsc: Object;
 type: Type;
 name: ORS.Ident;
 val: INTEGER
 END ;

 TypeDesc = RECORD
 form, ref, mno: INTEGER; (*ref is only used for import/export*)
 nofpar: INTEGER; (*for procedures; extension level for records*)
 len: INTEGER; (*for arrays, len < 0 => open array; for records: adr of descriptor*)
 dsc, typobj: Object;
 base: Type; (*for arrays, records, pointers*)
 size: INTEGER; (*in bytes; always multiple of 4, except for Byte, Bool and Char*)
 END ;

Procedures for generating and searching the lists are contained in module ORB. If a new identifier
is to be added, procedure NewObj first searches the list, and if the identifier is already present, a
double definition is diagnosed. Otherwise the new element is appended, thereby preserving the
order given by the source text.

Procedures, and therefore also scopes, may be nested. Each scope is represented by the list of its
declared identifiers, and the list of the currently visible scopes are again connected as a list.
Procedure OpenScope appends an element and procedure CloseScope removes it. The list of
scopes is anchored in the global variable topScope and linked by the field dsc. It is treated like a
stack. It consists of elements of type Object, each one being the header (class = Head) of the list of
declared entities. As an example, the procedure for searching an object (with name ORS.id) is
shown here:

PROCEDURE thisObj*(): Object;
 VAR s, x: Object;
BEGIN s := topScope;
 REPEAT x := s.next;
 WHILE (x # NIL) & (x.name # ORS.id) DO x := x.next END ;
 s := s.dsc
 UNTIL (x # NIL) OR (s = NIL);
 RETURN x
END thisObj;

A snapshot of a symbol table for an example with nested scopes is shown in Fig. 12.6. It is taken
when the following declarations are parsed and when the statement S is reached.

VAR x: INTEGER;

PROCEDURE P(u: INTEGER);
BEGIN ... END P;

PROCEDURE Q(v: INTEGER);
 PROCEDURE R(w: INTEGER);
 BEGIN S END R;
BEGIN ... END Q;

 39

Fig. 12.7 Snapshot of a symbol table

A search of an identifier proceeds first through the scope list, and for each header its list of object
records is scanned. This mirrors the scope rule of the language and guarantees that if several
entities carry the same identifier, the most local one is selected. The linear list of objects represents
the simplest implementation by far. A tree structure would in many cases be more efficient for
searching, and would therefore seem more recommendable. Experiments have shown, however,
that the gain in speed is marginal. The reason is that the lists are typically quite short. The
superiority of a tree structure becomes manifest only when a large number of global objects is
declared. We emphasize that when a tree structure is used for each scope, the linear lists must still
be present, because the order of declarations is sometimes relevant in interpretation, e.g. in
parameter lists.

Not only procedures, but also record types establish their own local scope. The list of record fields
is anchored in the type record's field dsc, and it is searched by procedure thisField. If a record type
R1 is an extension of R0, then R1's field list contains only the fields of the extension proper. The
base type R0 is referenced by the BaseTyp field of R1. Hence, a search for a field may have to
proceed through the field lists of an entire sequence of record base types.

12.6.2. Symbol files

The major part of module ORB is devoted to input and output of symbol files. A symbol file is a
linearized form of an excerpt of the symbol table containing descriptions of all exported (marked)
objects. All exports are declared in the global scope. Procedure Export traverses the list of global
objects and outputs them to the symbol file.

The structure of a symbol file is defined by the syntax specified below. The following terminal
symbols are class and form specifiers or reference numbers for basic types with fixed values:

Classes: Con = 1, Var = 2, Par = 3, Fld = 4; Typ = 5

Forms: Byte = 1, Bool = 2, Char = 3, Int = 4, LInt = 5, Set = 6,
 Pointer = 7, NoTyp = 9, ProcTyp = 10, Array = 12, Record = 13

Syntax:
SymFile = null key name versionkey {object}.
object = (CON name type (value | exno) | TYP name type [{fix} 0] | VAR name type expno).
type = ref (PTR type | ARR type len | REC type {field} 0 | PRO type {param} 0].

name class

dsc next
 Head

w Var

Int NIL

 Head

v Var

Int

 Head

NIL

x Var

Int

P Cons

type

Q Cons

type NIL

R Cons

type NIL

Proc

dsc

Proc

dsc

u Var

Int NIL

topScope

Proc

dsc

 40

field = FLD name type offset.
param = (VAR | PAR) type.

A procedure type description is contains a parameter list. Similarly, a record type description with
form specifier Record contains the list of field descriptions. Note that a procedure is considered as a
constant of a procedure type.

Objects have types, and types are referenced by pointers. These cannot be written on a file. The
straight-forward solution would be to use the type identifiers as they appear in the program to
denote types. However, this would be rather crude and inefficient, and second, there are
anonymous types, for which artificial identifiers would have to be generated.

An elegant solution lies in consecutively numbering types. Whenever a type is encountered the first
time, it is assigned a unique reference number. For this purpose, records (in the compiler) of type
Type contain the field ref. Following the number, a description of the type is then written to the
symbol file. When the type is encountered again during the traversal of the data structure, only the
reference number is issued, with negative sign. The global variable ORB.Ref functions as the
running reference number.

When reading a symbol file, a positive reference number is followed by the type's description. A
pointer to the type read is assigned to the global table typtab with the reference number as index.
When a negative reference number is read (it is not followed by a type description), then the type is
identified by typtab[-ref] (see procedure InType). In the following example, types are identified by
their reference number (e.g. R #14), and later referenced by this number (^14).

MODULE A;
 CONST Ten* = 10; Dollar* = "$";
 TYPE R* = RECORD u*: INTEGER; v*: SET END ;
 S* = RECORD w*: ARRAY 4 OF R END ;
 P* = POINTER TO R;
 A* = ARRAY 8 OF INTEGER;
 B* = ARRAY 4, 5 OF REAL;
 C* = ARRAY 10 OF S;
 D* = ARRAY OF CHAR;
 VAR x*: INTEGER;
 PROCEDURE Q0*;
 BEGIN END Q0;
 PROCEDURE Q1*(x, y: INTEGER): INTEGER;
 BEGIN RETURN x+y END Q1;
END A.

class = CON Ten [^4] 10
class = CON Dollar [^3] 36
class = TYP R [#14 form = REC [^9] exno = 1 extlev = 0 size = 8 { v [^6] 4 u [^4] 0}]()
class = TYP S [#15 form = REC [^9] exno = 2 extlev = 0 size = 32 { w [#0 form = ARR [^14] len = 4 size = 32] 0}]()
class = TYP P [#16 form = PTR [^14]]()
class = TYP A [#17 form = ARR [^4] len = 8 size = 32]()
class = TYP B [#18 form = ARR [#0 form = ARR [^5] len = 5 size = 20] len = 4 size = 80]()
class = TYP C [#19 form = ARR [^15] len = 10 size = 320]()
class = TYP D [#20 form = ARR [^3] len = -1 size = 8]()
class = VAR x [^4] 3
class = CON Q0 [#0 form = PRO [^9]()] 4
class = CON Q1 [#0 form = PRO [^4](class = VAR [^4] class = VAR [^4])] 5

After a symbol file has been generated, it is compared with the file from a previous compilation of
the same module, if one exists. Only if the two files differ and if the compiler's s-option is enabled, is
the old file replaced by the new version. The comparison is made by comparing byte after byte
without consideration of the file's structure. This somewhat crude approach was chosen because of
its simplicity and yielded good results in practice.

A symbol file must not contain addresses (of variables or procedures). If they did, most changes in
the program would result in a change of the symbol file. This must be avoided, because changes in

 41

the implementation (rather than the interface) of a module are supposed to remain invisible to the
clients. Only changes in the interface are allowed to effect changes in the symbol file, requiring
recompilation of all clients. Therefore, addresses are replaced by export numbers. The variable
exno (global in ORP) serves as running number (see ORP.Declarations and ORP.ProcedureDecl).
The translation from export number to address is performed by the loader. Every code file contains
a list (table) of addresses (of variables and entry points for procedures). The export number serves
as index in this table to obtain the requested address. Export numbers are generated by the parser.

Objects exported from some module M1 may refer in their declaration to some other module M0
imported by M1. It would be unacceptable, if an import of M1 would then also require the import of
M0, i.e. imply the automatic reading of M01's symbol file. It would trigger a chain reaction of imports
that must be avoided. Fortunately, such a chain reaction can be avoided by making symbol files
self-contained, i.e. by including in every symbol file the description of entities that stem from other
modules. Such entities are always types.

The inclusion of types imported from other modules seems simple enough to handle: type
descriptions must include a reference to the module from which the type was imported. This
reference is the name and key of the respective module. However, there exists one additional
complication that cannot be ignored. Consider a module M1 importing a variable x from a module
M0. Let the type T of x be defined in module M0. Also, assume M1 to contain a variable y of type
M0.T. Evidently, x and y are of the same type, and the compiler compiling M2 must recognize this
fact. Hence, when importing M0 during compilation of M1, the imported element T must not only be
registered in the symbol table, but it must also be recognized as being identical to the T already
imported from M2 directly. It is rather fortunate that the language definition specifies equivalence of
types on the basis of names rather than structure, because it allows type tests at execution time to
be implemented by a simple address comparison.

The measures to be taken to satisfy the new requirements are as follows:

1. Every type element in a symbol file is given a module number. Before a type description is
emitted to the file.

2. If a type to be exported has a name and stems from another, imported module, then also the
name and key of the module are attached, from which the type stems (see end of procedure
ORB.OutType and end of ORB.InType).

An additional detail is worth being mentioned here: Hidden pointers. We recall that individual fields
of exported record types may be hidden. If marked (by an asterisk) they are exported and therefore
visible in importing modules. If not marked, they are not exported and remain invisible, and
evidently seem to be omissible in symbol files. However, this is a fallacy. They need to be included
in symbol files, although without name, because of meta information to be provided for garbage
collection. This is elucidated as follows:

Assume that a module M1 declares a global pointer variables of a type imported from module M0.
MODULE M0;
 TYPE Ptr = POINTER TO Rec0;
 Rec0* = RECORD p*, q: Ptr ... END ;
END M0.

MODULE M1;
 VAR p: M0.Ptr;
 r: RECORD f: M0.Ptr; ... END ;
END M1.

Here p and r.f are roots of data structures that must be visited by the garbage collector. If they are
not, they will not be marked, and therefore collected with disastrous and entirely unpredictable
consequences. The crux is that not only exported pointers (p.p) must be listed, but also hidden
ones (p.q), although they are not accessible in module M1.

 42

We chose to include hidden pointers in symbol files without their names, but with their type being of
the form ORB.NilTyp. This must be considered in procedure ORG.FindPtrs, where the condition
typ.form = ORB.Pointer must be extended to (typ.form = ORB.Pointer) OR (typ.form = ORB.NilTyp).

But the story does not end here. Assume that in the example above module M1 declares a type
Rec1 as a n extension of M0.Rec0. This requires the generation of a type descriptor. And this
descriptor must include not only field p, but also the hidden field q. This is achieved by also
extending the condition typ.form = ORB.Pointer in ORG.FindPtrFlds to (typ.form = ORB.Pointer)
OR (typ.form = ORB.NilTyp).

12. 7. The code generator
The routines for generating instructions are contained in a single module: ORG. They are fairly
numerous, and therefore the interface of ORG is quite large. It is a procedural interface. This
implies that there is no "intermediate code" or "intermediate data structure" between parser and
code generator. This is one reason for the compactness of the code generator. The other is the
regularity and simplicity of the processor architecture. In order to understand the following material,
the reader is supposed to be familiar with this architecture (Appendix 2) and the generated code
patterns for individual language constructs (Section 12.2).

A distinguishing feature of this compiler is that parsing proceeds top-down according to the principle
of recursive descent in the parsing tree. This implies that for every syntactic construct a specific
procedure is called. It carries the same name as the construct. It also implies that properties of the
parsed construct can be represented by parameters of the parsing procedures. Consider, for
example, the construct of simple expression:

SimpleExpression = term {"+" term}.

The corresponding parsing procedure is
PROCEDURE SimpleExpression(VAR x: Item);
 VAR y: Item;
BEGIN term(x);
 WHILE sym = plus DO ORS.Get(sym); term(y); ORG.AddOp(x, y) END
END SimpleExpression

The generating procedure AddOp receives two parameters representing the operands, and returns
the result through the first parameter. This scheme carries the invaluable advantage of using
operands efficiently allocated on the stack rather than dynamically allocated on the heap and
subject to automatic storage retrieval (garbage collection). Here the processed operands quietly
disappear from the stack upon exit from the parser procedure.

The parameters representing syntactic constructs are of type Item defined in ORG. This data type
is rather similar to the type Object (in ORB). After all, it serves the same purpose; but it represents
internal items rather than declared objects.

TYPE Item = RECORD
 mode: INTEGER;
 type: ORB.Type;
 a, b, r: INTEGER;
 rdo: BOOLEAN (*read only*)
END

The attribute class of Object is renamed mode in Item. In fact, in some sense different classes
evoke different (corresponding) addressing modes as featured by the processor architecture.
According to the architecture, additional modes may have to be introduced. Thanks to the simplicity
of RISC, only three are needed:

Reg = 10; The item x is located in register x.r
RegI = 11; The item x is addressed indirectly through register x.r plus offset x.a
Cond = 12; The item is represented by the condition bit registers

 43

Instructions are emitted sequentially and emitted by the four procedures Put0, Put1, Put2, Put3.
They directly correspond to the instruction formats of the RISC processor (see Chapter 11). The
instructions are stored in the array code and the compiler variable pc serves as running index.

PROCEDURE Put0(op, a, b, c: INTEGER); format F0
PROCEDURE Put1(op, a, b, im: INTEGER); format F1
PROCEDURE Put2(op, a, b, off: INTEGER); format F2
PROCEDURE Put3(op, cond, off: INTEGER); format F3

12.7.1. Expressions

Expressions consist of operands and operators. They are evaluated and have a value. First, a
number of make-procedures transform objects into items (see Section 12.3.2). The principal one is
MakeItem. Typical objects are variables (class, mode = Var). Global variables are addressed with
base register SB (x.r = 13), local variables with the stack pointer SP (x.r = 14). VAR-parameters
are addressed indirectly; the address is on the stack (class, mode = Par, Ind). x.a is the offset from
the stack pointer.

Before an operator can be applied to operands, these must first be transferred (loaded) into
registers. This is because the RISC performs operations only on registers. The loading is achieved
by procedure load (and loadAdr) in ORG. The resulting mode is Reg. In allocating registers, a strict
stack principle is used, starting with R0, up to R11. This is certainly not an optimal strategy and
provides ample room for improvement (usually called optimization). The compiler variable RH
indicates the next free register (top of register stack).

Base address SB is, as the name suggests, static. But this holds only within a module. It implies
that on every transfer to a procedure in another module, the static base must be adjusted. The
simplest way is to load SB before every external call, and to restore it to its old value after return
from the procedure. We chose a different strategy: loading on demand (see below: global
variables).

If a variable is indexed, has a field selector, is dereferenced, or has a type guard, this is detected in
the parser by procedure selector. It calls generators Index, Field, DeRef, or TypeTest accordingly
(see Section 12.3.2. and patterns 1 - 4 in Section 12.2). These procedures cause item modes to
change as follows:

mode transition of x instructions emitted construct

1. Index(x, y) (y is loaded into y.r)
Var --> RegI ADD y.r, SP, y.r array variable

Par --> RegI LDR RH, SP, x.a array parameter
 ADD y.r, RH, y.r

RegI --> RegI ADD x.r, x.r, y.r indexed array

2. Field(x, y) (y.mode = Fld, y.a = field offset)
Var --> Var none field designator, add offset to x.a
RegI --> RegI none add field offset to x.a
Par --> Par none add field offset to x.b

3. DeRef(x)
Var --> RegI LDR RH, SP, x.a dereferenced x^

Par --> RegI LDR RH, SP, x.a dereferenced parameter x^
 LDR RH, RH, x.b

RegI --> RegI LDR x.r, x.r, x.a

A fairly large number of procedures then deal with individual operators. Specifically, they are Not,
And1, And2, Or1, Or2 for Boolean operators, Neg, AddOp, MulOp, DivOp for operations on
integers, RealOp for operations on real numbers, and Singleton, Set, In, and SetOp for operations

 44

on Sets. And finally, following the same pattern, are the procedures for relations (comparisons)
IntRelation, SetRelation, RealRelation, StringRelation. (see Appendix for listing of ORG). We note
in particular that if all operands are constants, their evaluation is performed by the compiler and not
delegated to run-time. This is an important efficiency factor.

12.7.2. Relations

RISC does not feature any compare instruction. Instead, subtraction is used, because an implicit
comparison wth 0 is performed along with any arithmetic (or load) instruction. Instead of x < y we
use x-y < 0. This is possible, because in addition to the computed difference deposited in a register,
also the result of the comparison is deposited in the condition flags N (difference negative) and Z
(difference zero). Relations therefore yield a result item x with mode Cond. x.r (= relmap[sym])
identifies the relation. Branch instructions (jumps) are executed conditionally depending on these
flags. The value x.r is then used when generating branch instructions. For example, the relation x <
y is translated simply into

LDR R0, SP, x
LDR R1, SP, y
CMP R0, R0, R1

and the resulting item mode is x.mode = Cond, x.r := "less". (The mnemonic CMP is synonymous
with SUB). More about relations and Boolean expressions will be explained in Section 12.7.6.

12.7.3. Set operations

The type SET represents sets of small integers in the range from 0 to 31. Bit i being 1 signals that i
is an element of the set. This is a convenient representation, because the logical instructions
directly mirror the set operations: AND implements set intersection, OR set union, and XOR the
symmetric set difference. This representation also allows a simple and efficient implementation of
membership tests. The instructions for the expression n IN s is generated by procedure In.
Assuming the value n in register R0, and the set s in R1, we obtain

ADD R0, R0, 1
ROR R1, R1, R0 rotate s by i+1 position, the relevant bit moving to the sign bit

The resulting item mode is Cond with x.r = "minus".

Of some interest are the procedures for generating sets, i.e. for processing {m}, {m .. n}, and {m, n},
where m, n are integer expressions.

We start with {m}. It is generated by procedure Singleton using a shift instruction. Assuming m in
R0, the resulting code is

MOV R1, 0, 1
LSL R0, R1, R0 shift 1 by m bit positions to the left

Somewhat more sophisticated is the generation of {m .. n} by procedure Set. Assuming m in R0,
and n is R1, the resulting code is

MOV R2, 0, -2
LSL R1, R2, R1 shift -2 by n bit positions to the left
MOV R2, 0, -1
LSL R0, R2, R0 shift -1 by m bit positions to the left
XOR R0, R0, R1

The set {m, n} is generated as the union of {m} and {n}. If any of the element values is a constant,
several possibilities of code improvement are possible. For details, the reader is referred to the
source code of ORG.

12.7.4. Assignments

 45

Statements have an effect, but no result like expressions. Statements are executed, not evaluated.
Assignments alter the value of variables through store instructions. The computation of the address
of the affected variable follows the same scheme as for loading. The value to be assigned must be
in a register.

Assignments of arrays (and records) are an exceptional case in so far as they are performed not by
a single store instruction, but by a repetition. Consider y := x, where x, and y are both arrays of n
integers. Assuming that the address of y is in register R0, that of x in R1, and the value n in R2.
Then the resulting code is

L LDR R3, R1, 0 source
 ADD R1, R1, 4
 STR R3, R0, 0 destination
 ADD R0, R0, 4
 SUB R2, R2, 1 counter
 BNE L

12.7.5. Conditional and repetitive statements

These statements are implemented using branch instructions (jumps) as shown in Section 12.2,
Patterns 5 - 7. In all repetitive statements, backward jumps occur. Here, at the point of return the
value of the global variable ORG.pc is saved in a local (!) variable of the involved parsing
procedure. It is retrieved when the backward jump is emitted. We note that branch instructions use
a displacement rather than an absolute destination address. It is the difference between the branch
instruction and the destination of the jump.

A difficulty, however, arises in the case of forward jumps, a difficulty inherent in all single-pass
compilers: When the branch is issued, its destination is still unknown. It follows that the branch
displacement must be later inserted when it becomes known, when the destination is reached. This
is called a fixup. Here the method of fixup lists is used. The place of the instruction with still
unknown destination is held in a variable L local to the respective parsing procedure. If several
branches have the same destination, L is the heading of a list of the instructions to be fixed up, with
its links placed in the instructions themselves in the place of the eventual jump displacement. This
shown for the if statement by an excerpt of ORP.StatSequence with local variable L0:

ELSIF sym = ORS.if THEN
 ORS.Get(sym); expression(x); ORG.CFJump(x);
 StatSequence; L0 := 0;
 WHILE sym = ORS.elsif DO
 ORS.Get(sym); ORG.FJump(L0); ORG.Fixup(x); expression(x);
 ORG.CFJump(x); Check(ORS.then, "no THEN"); StatSequence
 END ;
 IF sym = ORS.else THEN ORS.Get(sym); ORG.FJump(L0); ORG.Fixup(x); StatSequence
 ELSE ORG.Fixup(x)
 END ;
 ORG.FixLink(L0);

where in module ORG:
 PROCEDURE CFJump(VAR x: Item); (*conditional forward jump*)
 BEGIN
 IF x.mode # Cond THEN loadCond(x) END ;
 Put3(BC, negated(x.r), x.a); FixLink(x.b); x.a := pc-1
 END CFJump;

 PROCEDURE FJump(VAR L: LONGINT); (*unconditional forward jump*)
 BEGIN Put3(BC, 7, L); L := pc-1
 END FJump;

 PROCEDURE fix(at, with: LONGINT);
 BEGIN code[at] := code[at] DIV C24 * C24 + (with MOD C24)
 END fix;

 46

 PROCEDURE FixLink(L: LONGINT);
 VAR L1: LONGINT;
 BEGIN invalSB;
 WHILE L # 0 DO L1 := code[L] MOD 40000H; fix(L, pc-L-1); L := L1 END
 END FixLink;

 PROCEDURE Fixup(VAR x: Item);
 BEGIN FixLink(x.a)
 END Fixup;

In while-, repeat-, and for statements essentially the same technique is used with the support of the
identical procedures in ORG.

12.7.6. Boolean expressions

In the case of arithmetic expressions, our compilation scheme results in a conversion from infix to
postfix notation (x+y => xy+). This is not applicable for Boolean expressions, because the
operators & and OR are defined as follows:

x & y --> if x then y else FALSE
x OR y -- > if x then TRUE else y

This entails that depending on the value of x, y must not be evaluated. As a consequence, jumps
may have to be taken across the code for y. Therefore, the same technique of conditional
evaluation must be used as for conditional statements. In the case of an expression x & y (x OR y),
procedure ORG.And1 resp. ORG.Or1 must be called just after parsing x (see ORP.term resp.
ORP.SimpleExpression). Only after parsing also y can the generators ORG.And2 resp. ORG(Or2)
be called, providing the necessary fixups of forward jumps.

PROCEDURE And1(VAR x: Item); (* x := x & *)
BEGIN
 IF x.mode # Cond THEN loadCond(x) END ;
 Put3(BC, negated(x.r), x.a); x.a := pc-1; FixLink(x.b); x.b := 0
END And1;

PROCEDURE And2(VAR x, y: Item);
BEGIN
 IF y.mode # Cond THEN loadCond(y) END ;
 x.a := merged(y.a, x.a); x.b := y.b; x.r := y.r
END And2;

A negative consequence of this scheme having condition flags in the processor is that when an
item with mode Cond has to be transferred into mode Reg, as in a Boolean assignment, an
unpleasantly complex instruction sequence must be generated. Fortunately, this case occurs quite
rarely.

12.7.7. Procedures

Before embarking on an explanation of procedure calls, entries and exits, we need to know how
recursion is handled and how storage for local variables is allocated. Procedure calls cause a
sequence of frames to be allocated in a stack fashion. These frames are the storage space for local
variables. Each frame is headed by a single word containing the return address of the call. This
address is deposited in R15 by the call instructions (BL, branch and link). The compiler "knows" the
size of the frame to be allocated, and thus merely decrements the stack pointer SP (R14) by this
amount. Upon return, SP is incremented by the same amount, and PC is restored by a branch
instruction. In the following example, a procedure P is called, calling itself Q, and Q calling P again
(recursion). The stack then contains 3 frames (see Figure 12.7).

 47

Figure 12.7 Stack frames

Scheme and layout determine the code sequences for call, entry and exit of procedures. Here is an
example of a procedure P with 2 parameters:

Call: LDR R0, param0
 LDR R1, param1
 BL P

Prolog: SUB SP, SP, size decrement SP
 STR LNK, SP, 0 push return adr
 STR R0, SP, 4 push parameter 0
 STR R1, SP, 8 push parameter1

Epilog: LDR LNK, SP, 0 pop return adr
 ADD SP, SP, size increment SP
 BR LNK

When the call instruction is executed, parameters reside in registers, starting with R0. For function
procedures, the result is passed in register R0. This scheme is very efficient; storing the parameters
occurs only in a single place, namely at procedure entry, and not before each call. However, it has
severe consequences for the entire register allocation strategy. Throughout the compiler, registers
must be allocated in strict stack fashion. Furthermore, parameter allocation must start with R0. This
is a distinct drawback for function calls. If registers are occupied by other values loaded prior to the
call, they must be cleared, i.e. the parameters must be saved and reloaded after return. This is
rather cumbersome (see procedures ORG.SaveRegisters and ORG.RestoreRegisters).

F(x) no register saving
x + F(x)
F(F(x))
(x+1) + F(x) register saving necessary

12.7.8. Type extension

Static typing is an important principle in programming languages. It implies that every constant,
variable or function is of a certain data type, and that this type can be derived by reading the
program text without executing it. It is the key principle to introduce important redundancy in
languages in such a form that a compiler can detect inconsistencies. It is therefore the key element
for reducing the number of errors in programs.

However, it also acts as a restriction. It is, for example, impossible to construct data structures
(arrays, trees) with different types of elements. In order to relax the rule of strictly static typing, the
notion of type extension was introduced in Oberon. It makes it possible to construct

return adr

return adr

return adr

SP

Q

P

P

 48

inhomogeneous data structures without abandoning type safety. The price is that the checking of
type consistency must in certain instances be deferred to run-time. Such checks are called type
tests. The challenge is to defer to run-time as few checks as possible and as many as needed.

The solution in Oberon is to introduce families of types, and compatibility among their members.
Their members are thus related, and a family forms a hierarchy. The principle idea is the following:
Any record type T0 can be extended into a new type T1 by additional record fields (attributes). T1 is
then called an extension of T0, which in turn is said to be T1’s base type. T1 is then type
compatible with T0, but not vice-versa. This property ensures that in many cases static type
checking is still possible. Furthermore, it turns out that run-time tests can be made very efficient,
thus minimizing the overhead for maintaining type safety.

For example, given the declarations
TYPE R0 = RECORD u, v: INTEGER END ;
 R1 = RECORD (R0) w: INTEGER END

we say that R1 is an extension of R0. R0 has the fields u and v, R1 has u, v, and w. The concept
becomes useful in combination with pointers. Let

TYPE P0 = POINTER TO R0;
 P1 = POINTER TO R1;
VAR p0: P0; p1: P1;

Now it is possible to assign p1 to p0 (because a P1 is always also a P0), but not p0 to p1, because
a P0 need not be a P1. This has the simple consequence that a variable of type P0 may well point
to an extension of R0. Therefore, data structures can be declared with a base type, say P0, as
common element type, but in fact they can individually differ, they can be any extension of the base
type.

Obviously, it must be possible to determine the actual, current type of an element even if the base
type is statically fixed. This is possible through a type test, syntactically a Boolean factor:

p0 IS P1 (short for p0^ IS R1)

Furthermore, we introduce the type guard. In the present example, the designator p0.w is illegal,
because there is no field w in a record of type R0, even if the current value of p0^ is a R1. As this
case occurs frequently, we introduce the short notation p0(P1).w, implying a test p0 IS P1 and an
abort if the test is not met.

It is important to mention that this technique also applies to formal variable parameters of record
type, as they also represent a pointer to the actual parameter. Its type may be any extension of the
type specified for the formal parameter in the procedure heading.

How are type test and type guard efficiently implemented? Our first observation is that they must
consist of a single comparison only, similar to index checks. This in turn implies that types must be
identified by a single word. The solution lies in using the unique address of the type descriptor of
the (record) type. Which data must this descriptor hold? Essentially, type descriptors (TD) must
identify the base types of a given type. Consider the following hierarchy:

TYPE T = RECORD … END ;
 T0 = RECORD (T) … END ; extension level 1
 T1 = RECORD (T) … END ; extension level 1
 T00 = RECORD (T0) … END ; extension level 2
 T01 = RECORD (T0) … END ; extension level 2
 T10 = RECORD (T1) … END ; extension level 2
 T11 = RECORD (T1) … END ; extension level 2

 49

Figure 12.8. A type hierarchy

In the symbol table, the field base refers to the ancestor of a given record type. Thus base of the
type representing T11 points to T1, etc. Run-time checks, however, must be fast, and hence cannot
proceed through chains of pointers. Instead, each TD contains an array with references to the
ancestor TDs (including itself). For the example above, the TDs are as follows:

TD(T) = [T]
TD(T0) = [T, T0]
TD(T1) = [T, T1]
TD(T00) = [T, T0, T00]
TD(T01) = [T, T0, T01]
TD(T10) = [T, T1, T10]
TD(T11) = [T, T1, T11]

Evidently, the first element can be omitted, as it always refers to the common base of the type
hierarchy. The last element always points to the TD’s owner. TDs are allocated in the data area, the
area for variables.

References to TDs are called type tags. They are required in two cases. The first is for records
referenced by pointers. Such dynamically allocated records carry an additional, hidden field holding
their type tag. (A second additional word is reserved for use by the garbage collector. The offset of
the tag field is therefore -8). The second case is that of record-typed VAR-parameters. In this case
the type tag is explicitly passed along with the address of the actual parameter. Such parameters
therefore require two words/registers.

A type test then consists of a test for equality of two type tags. In p IS T the first tag is that of the
n’th entry of the TD of p^, where n is the extension level of T. The second tag is that of type T. This
is shown in Pattern13 in Section 12.2 (see also Fig. 12.4). The test then is as follows:

p^.tag^[n] = adr(T), where n is the extension level of T

When declaring a record type, it is not known how many extensions, nor how many levels will be
built on this type. Therefore TD’s should actually be infinite arrays. We decided to restrict them to 3
levels only. The first entry, which is never used for checking, is replaced by the size of the record.

12.7.9. Import and export, global variables

Addresses of imported objects are not available to the compiler. Their computation must be left to
the module loader (see Chapter 6). Similar to handling addresses of forward jumps, the compiler
puts the necessary information in place of the actual address into the instruction itself. In the case
of procedure calls, this is quite feasible, because the BL instruction features an offset field of 24
bits. The information consists of the module number and the export number of the imported object.
In addition, there is a link to the previous instruction referring to an imported procedure. The origin
of the list of procedure call fixups is rooted in the compiler variable fixorgP, and of the 24 bits in
each BL instruction 4 bits are used for the module number, 8 bits for the object's export number,
and 12 for the link. The loader need only scan this list to fix up the addresses (jump offsets).

Matters are more complex in the case of data. Object records in the symbol table have a field lev. It
indicates the nesting level of variables local to procedures. It is also used for the module number in
the case of variables of imported modules. Note that when importing, objects designating modules
are inserted in the symbol table, and the list of their own objects are attached in the field dsc. In this

T

T0 T1

T00 T01 T10 T11

base

 50

latter case, the module numbers have an inverted sign (are negative). Such imported objects are
static, i.e. have a fixed address. In principle their absolute address could be computed (fixed) by the
module loader. However, this is not practicable, because RISC instructions have an address offset
of 16 bits only. It is therefore necessary in the general case to use a base address in conjunction
with the offset. We use a single register for holding the static base (SB, R13). This register need be
reloaded for every access to an imported variable. However, the compiler keeps track of external
accesses; if a variable is to be accessed from the same module as the previous case, then
reloading is avoided (see procedure GetSB and global compiler variable curSB).

This base address is fetched from a table global to the entire system. This module table contains
one entry for every module loaded, namely the address of the module's data section. The address
of the table is permanently in register MT (= R12). An access to an imported variable therefore
always requires two instructions:

LDR SB, MT, modno*4 base address of data section
LDR R0, SB, offset offset computed by the loader from object's export number

Considering the fact that references to external variables are (or should be) rare, this circumstance
is of no great concern. (Note also that such accesses are read-only). More severe is the fact that
we also treat global variables contained in the same module by the same technique. Their level
number is 0. One might use a specific base register for the base of the current module. Its content
would then have to be reloaded upon every procedure call and after every return. This is common
technique, but we have here chosen to reload only when necessary, i.e. only when an access is at
hand. This strategy rewards the programmer who sensibly uses global variables rarely.

12.7.10. Traps

This compiler provides an extensive system of safeguard by providing run-time checks (aborts) in
several cases:

trap number trap cause

1 array index out of range
2 type guard failure
3 array or string copy overflow
4 access via NIL pointer
5 illegal procedure call
6 integer division by zero
7 assertion violated

These checks are implemented very efficiently in order not to downgrade a program's performance.
Involved is typically a single compare instruction, plus a conditional branch (BLR MT). It is assumed
that entry 0 of the module table contain not a base address (module numbers start with 1), but a
branch instruction to an appropriate trap routine. The trap number is encoded in bits 4:7 of the
branch instruction.

The predefined procedure Assert generates a conditional trap with trap number 7. For example, the
statement Assert(m = n) generates

LDR R0, m
LDR R1, n
CMP R0, R0, R1
BLR 1, 7CH branch and link if unequal through R12, trap number 7

Procedure New, representing the operator NEW, has been implemented with the aid of the trap
mechanism. (This is in order to omit in ORG any reference to module Kernel, which contains the
allocation procedure New). The generated code for the statement NEW(p) is

ADD R0, SP, p address of p
ADD R1,SB, tag type tag
BLR 7, 0CH branch and link unconditionally through R12 (MT), trap number 0

 51

13 A graphics editor

13.1. History and goal
The origin of graphics systems as they are in use at this time was intimately tied to the advent of the
high-resolution bit-mapped display and of the mouse as pointing device. The author's first contact
with such equipment dates back to 1976. The Alto computer at the Xerox Palo Alto Research Center
is justly termed the first workstation featuring those characteristics. The designer of its first graphics
package was Ch. Thacker who perceived the usefulness of the high-resolution screen for drawing
and processing schematics of electronic circuits. This system was cleverly tailored to the needs
encountered in this activity, and it was remarkable in its compactness and effectiveness due to the
lack of unnecessary facilities. Indeed, its acronym was SIL, for Simple ILlustrator.

After careful study of the used techniques, the author designed a variant, programmed in Modula-2
(instead of BCPL) for the PDP-11 Computer, thereby ordering and exhibiting the involved data
structures more explicitly. In intervals of about two years, that system was revised and grew
gradually into the present Draw system. The general goal remained a simple line drawing system:
emphasis was placed on a clear structure and increase of flexibility through generalization of existing
rather than indiscriminate addition of new features.

In the history of this evolution, three major transitions can be observed. The first was the move from
a single "window", the screen, to multiple windows including windows showing different excerpts of
the same graphic. This step was performed on the Lilith computer which resembled the Alto in many
ways. The second major transition was the application of the object-oriented style of programming,
which allowed the addition of new element types to the basic system, making it extensible. The third
step concerned the proper integration of the Draw system with Oberon's text system. The last two
steps were performed using Oberon and the Ceres computer.

We refrain from exhibiting this evolution and merely present the outcome, although the history might
be an interesting reflection of the evolution of programming techniques in general, containing many
useful lessons. We stress the fact, however, that the present system rests on a long history of
development, during which many features and techniques were introduced and later discarded or
revised. The size of the system's description is a poor measure of the effort that went into its
construction; deletion of program text sometimes marks bigger progress than addition.

The goal of the original SIL program was to support the design of electronic circuit diagrams.
Primarily, SIL was a line drawing system. This implies that the drawings remain uninterpreted.
However, in a properly integrated system, the addition of modules containing operators that interpret
the drawings is a reasonably straight-forward proposition. In fact, the Oberon system is ideally suited
for such steps, particularly due to its command facility.

At first, we shall ignore features specially tailored to circuit design. The primary one is a macro facility
to be discussed in a later chapter.

The basic system consists of the modules Draw, GraphicFrames, and Graphics. These modules
contain the facilities to generate and handle horizontal and vertical lines, text captions, and macros.
Additional modules serve to introduce other elements, such as rectangles and circles, and the
system is extensible, i.e. further modules may be introduced to handle further types of elements.

13.2. A brief guide to Oberon's line drawing system
In order to provide the necessary background for the subsequent description of the Draw system's
implementation, a brief overview is provided in the style of a user's guide. It summarizes the facilities
offered by the system and gives an impression of its versatility.�

The system called Draw serves to prepare line drawings. They contain lines, text captions, and other
items, and are displayed in graphic viewers (more precisely: in menu viewers' graphic frames). A

 52

graphic viewer shows an excerpt of the drawing plane, and several viewers may show different parts
of a drawing. The most frequently used commands are built-in as mouse clicks and combinations of
clicks. Additional commands are selectable from texts, either in viewer menus (title bars) or in the
text called Draw.Tool. Fig. 13.1. shows the display with two graphic viewers at the left and the draw
tool text at the right. The mouse buttons have the following principal functions whenever the cursor
lies in a graphic frame:

left: draw / set caret
middle: move / copy
right: select

A mouse command is identified (1) by the key k0 pressed initially, (2) by the initial position P0 of the
cursor, (3) by the set of pressed keys k1 until the last one is released, and (4) the cursor position P1
at the time of release.

13.2.1. Basic commands

The command Draw.Open opens a new viewer and displays the graph with the name given as
parameter. We suggest that file names use the extension Graph.

Drawing a line. In order to draw a horizontal or vertical line from P0 to P1, the left key is pressed with
the cursor at P0 and, while the key is held, the mouse and cursor is moved to P1. Then the key is
released. If P0 and P1 differ in both their x and y coordinates, the end point is adjusted so that the
line is either horizontal or vertical.

Writing a caption. First the cursor is positioned where the caption is to appear. Then the left key is
clicked, causing a crosshair to appear. It is called the caret. Then the text is typed. Only single lines
of texts are accepted. The DEL key may be used to retract characters (backspace).

Selecting. Most commands require the specification of operands, and many implicitly assume the
previously selected elements - the selection - to be their operands. A single element is selected by
pointing at it with the cursor and then clicking the right mouse button. This also causes previously
selected elements to be deselected. If the left key is also clicked, their selection is retained. This
action is called an interclick. To select several elements at once, the cursor is moved from P0 to P1
while the right key is held. Then all elements lying within the rectangle with diagonally opposite
corners at P0 and P1 are selected. Selected lines are displayed as dotted lines, selected captions
(and macros) by inverse video mode. A macro is selected by pointing at its lower left corner. The
corner is called sensitive area.

Moving. To move (displace) a set of elements, the elements are first selected and then the cursor is
moved from P0 to P1 while the middle key is held. The vector from P0 to P1 specifies the movement
and is called the displacement vector. P0 and P1 may lie in different viewers displaying the same
graph. Small displacements may be achieved by using the keyboard's cursor keys.

Copying. Similarly, the selected elements may be copied (duplicated). In addition to pressing the
middle key while indicating the displacement vector, the left key is interclicked. The copy command
may also be used to copy elements from one graph into another graph by moving the cursor from
one viewer into another viewer displaying the destination graph. A text caption may be copied from a
text frame into a graphic frame and vice-versa. There exist two ways to accomplish this: 1. First the
caret is placed at the destination position, then the text is selected and the middle key is interclicked.
2. First the text is selected, then the caret is placed at the destination position and the middle key is
interclicked.

Shifting the plane. You may shift the entire drawing plane behind the viewer by specifying a
displacement vector pressing the middle button (like in a move command) and interclicking the right
button.

The following table shows a summary of the mouse actions:

left draw line
left (no motion) set caret

 53

left + middle copy selected caption to caret
left + right set secondary caret

middle move selection
middle + left copy selection
middle + right shift drawing plane

right select area
right (no motion) select object
right + middle copy caption to caret
right + left select without deselection

13.2.2. Menu commands

The following commands are displayed in the menu (title bar) of every graphic viewer. They are
activated by being pointed at and by clicking the middle button.

Draw.Delete The selected elements are deleted.
Draw.Store The drawing is written as file with the name shown in the title bar.
 The original file is renamed by appending ".Bak".
Draw.Restore The entire frame is redrawn
Draw.Ticks The frame displays a pattern of dots (ticks) to facilitate positioning.

The two viewers in Fig. 13.1. display different parts of the same graphic. The second view was
obtained from the generic System.Copy command and a subsequent shift of the drawing plane.

Figure 13.1 Display with graphics duplicated viewers

13.2.3. Further commands

The following commands are listed in the text Draw.Tool, but may appear in any text.

Draw.Store name The drawing in the marked viewer is stored as a file with the specified name.

 54

The subsequent commands change attributes of drawing elements, such as line width, text font, and
color, and they apply to the most recent selection.

Draw.SetWidth w default = 1, 0 < w < 7.
Draw.ChangeFont fontname
Draw.ChangeColor c
Draw.ChangeWidth w (0 < w < 7)

The ChangeColor command either take a color number in the range 1 .. 15 or a string as parameter.
It serves to copy the color from the selected character.

13.2.4. Macros

A macro is a (small) drawing that can be identified as a whole and be used as an element within a
(larger) drawing. Macros are typically stored in collections called libraries, from where they can be
selected and copied individually.

Draw.Macro lib mac The macro mac is selected from the library named lib and inserted in the
drawing at the caret's position.

An example for the use of macros is drawing electronic circuit diagrams. The basic library file
containing frequently used TTL components is called TTL0.Lib, and a drawing showing its elements
is called TTL0.Graph (see Figure 13.2).

Figure 13.2 Viewer with circuit macros of TTL0 library

13.2.5. Rectangles

Rectangles can be created as individual elements. They are frequently used for framing sets of
elements. Rectangles consist of four lines which are selectable as a unit. The attribute commands
Draw.SetWidth, System.SetColor, Draw.ChangeWidth, and Draw.ChangeColor also apply to

 55

rectangles. Rectangles are selected by pointing at their lower left corner and are created by the
following steps:

1. The caret is placed where the lower left corner of the new rectangle is to lie.
2. A secondary caret is placed where the opposite corner is to lie (ML + MR).
3. The command Rectangles.Make is activated.

13.2.6. Oblique lines, circles, and ellipses

Further graphic elements are (oblique) lines, circles, and ellipses. The sensitive area of circles and
ellipses is at their lowest point. They are created by the following steps:

Lines: 1. The caret is placed where the starting point is to lie.
 2. A secondary caret is placed at the position of the end.
 3. The command Curves.MakeLine is activated.

Circles: 1. The caret is placed where the circle's center is to lie.
 2. A secondary caret is placed, its distance from the center specifying the radius.
 3.The command Curves.MakeCircle is activated.

Ellipses: 1. The caret is placed where the center is to lie.
 2. A second caret is placed. Its horizontal distance from the first caret specifies one axis.
 3. A third caret is placed. Its vertical distance from the first caret specifies the other axis.
 4. The command Curves.MakeEllipse is activated.

13.2.7. Spline curves

Spline curves are created by the following steps:

1. The caret is placed where the starting point is to lie.
2. Secondary carets are placed at the spline's fixed points (at most 20).
3. The command Splines.MakeOpen or Splines.MakeClosed is activated.

13.2.8. Constructing new macros

A new macro is constructed and inserted in the library lib under the name mac as follows:

1. All elements which belong to the new macro are selected.
2. The caret is placed at the lower left corner of the area to be spanned by the macro.
3. A secondary caret is placed at the upper right corner of the area to be spanned.
4. The command MacroTool.MakeMacro lib mac is activated.

An existing macro can be decomposed (opened) into its parts as follows:

1. The macro is selected.
2. The caret is placed at the position where the decomposition is to appear.
3. The command MacroTool.OpenMacro is activated.

The command MacroTool.StoreLibrary lib file stores the library lib on the specified file. Only the
macros presently loaded are considered as belonging to the library. If one wishes to add some
macros to an existing library file, all of its elements must first be loaded. This is best done by opening
a graph containing all macros of the desired library file.

13.3. The core and its structure
Like a text, a graphic consists of elements, subsequently to be called objects. Unlike a text, which is
a sequence of elements, a graphic is an unordered set of objects. In a text, the position of an
element need not be explicitly indicated (stored); it is recomputed from the position of its predecessor
each time it is needed, for example for displaying or selecting an element. In a graphic, each object
must carry its position explicitly, as it is independent of any other object in the set. This is an
essential difference, requiring a different treatment and much more storage space for an equal
number of objects.

 56

Although this is an important consideration in the choice of a representation of a data structure, the
primary determinants are the kind of objects to be included, and the set of operations to be applied to
them. Here SIL set a sensible starting point. To begin with, there exist only two kinds of objects,
namely straight, horizontal and vertical lines, and short texts for labelling lines, called captions. It is
surprising how many useful task can be fulfilled with only these two types of objects.

The typical operations to be performed on objects are creating, drawing, moving, copying, and
erasing. Those performed on a graphic are inserting, searching, and deleting an object. For the
operations on objects, data indicating an object's position (and possibly color), its length and width in
the case of lines, and the character string in the case of captions suffice. For the operations on the
graphic, some data structure representing the set of objects must be chosen. Without question, a
dynamic structure is most appropriate, and it requires the addition of some linking fields to the record
representing an object. Without further deliberation, and with the idea that graphics to be handled
with this system contain hundreds rather than tens of thousands of objects, we chose the simplest
solution, the linear list. A proper modularization in connection with information hiding will make it
possible to alter this choice without affecting client modules.

Although in general the nature of a user interface should not influence the representation chosen for
the abstract data structure, we need to take note of the manner in which parameters of certain
operations are denoted. It is, for example, customary in interactive graphics systems to select the
objects to which an operation is to apply before invoking that operation. Their selection is reflected in
their visual appearance in some way, and gives the user an opportunity to verify the selection (and to
change it, if necessary) before applying the operation (such as deletion). For an object to be
selectable means that it must record a state (selected/unselected). We note that it is important that
this state is reflected by visual appearance.

As a consequence, the property selected is added to every object record. We now specify the data
types representing lines and captions as follows and note that both types must be extensions of the
same base type in order to be members of one and the same data structure.

TYPE Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER;
 selected: BOOLEAN;
 next: Object
 END ;

 Line = POINTER TO LineDesc;
 LineDesc = RECORD (Object) END ;

 Caption = POINTER TO CaptionDesc
 CaptionDesc = RECORD (Object)
 pos, len: INTEGER
 END

Selection of a single element is typically achieved by pointing at the object with mouse and cursor.
Selection of a set of objects is achieved by specifying a rectangular area, implying selection of all
objects lying within it. In both cases, the search for selected elements proceeds through the linked
list and relies on the position and size stored in each object's descriptor. As a consequence, the rule
was adopted that every object not only specify a position through its coordinates x, y, but also the
rectangular area within which it lies (width w, height h). It is thus easy to determine whether a given
point identifies an object, as well as whether an object lies fully within a rectangular area.

In principle, each caption descriptor carries the sequence of characters (string) representing the
caption. The simplest realization would be an array structured field, limiting the length of captions to
some fixed, predetermined value. First, this is highly undesirable (although used in early versions of
the system). And second, texts carry attributes (color, font). It is therefore best to use a global
"scratch text", and to record a caption by the position and length of the string in this immutable text.

A procedure drawGraphic to draw all objects of a graphic now assumes the following form:

 57

PROCEDURE drawObj(obj: Object);
BEGIN
 IF obj IS Line THEN drawLine(obj(Line))
 ELSIF obj IS Caption THEN drawCaption(obj(Caption))
 ELSE (*other object types, if any*)
 END
END drawObj;

PROCEDRE drawGraphic(first: Object);
 VAR obj: Object;
BEGIN obj := first;
 WHILE obj # NIL DO drawObj(obj); obj := obj.next END
END drawGraphic

The two procedures typically are placed in different modules, one containing operations on objects,
the other those on graphics. Here the former is the service module, the latter the former's client.
Procedures for, e.g, copying elements, or determining whether an object is selectable, follow the
same pattern as drawGraphic.

This solution has the unpleasant property that all object types are anchored in the base module. If
any new types are to be added, the base module has to be modified (and all clients are to be - at
least - recompiled). The object-oriented paradigm eliminates this difficulty by inverting the roles of the
two modules. It rests on binding the operations pertaining to an object type to each object individually
in the form of procedure-typed record fields as shown in the following sample declaration:

ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 draw: PROCEDURE (obj: Object);
 write: PROCEDURE (obj: Object; VAR R: Files.Rider);
 next: Object
 END

The procedure drawGraphic is now formulated as follows:
PROCEDURE drawGraphic(first: Object);
 VAR obj : Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO obj.draw(obj); obj := obj.next END
END drawGraphic;

The individual procedures - in object-oriented terminology called methods - are assigned to the
record's fields upon its creation. They need no further discrimination of types, as this role is assumed
by the assignment of the procedures upon their installation. We note here that the procedure fields
are never changed; they assume the role of constants rather than variables associated with each
object.

This example exhibits in a nutshell the essence of object-oriented programming, extensibility as its
purpose and the procedure-typed record field as the technique.

The given solution, as it stands, has the drawback that each object (instance, variable) contains
several procedures (of which three are listed), and therefore leads to a storage requirement that
should be avoided. Furthermore, it defines once and for all the number of operations applicable to
objects, and also their parameters and result types. A different approach with the same underlying
principle removes these drawbacks. It employs a single installed procedure which itself discriminates
among the operations according to different types of parameters. The parameters of the preceding
solution are merged into a single record called a message. The unified procedure is called a handler,
and messages are typically extensions of a single base type Msg.

TYPE Msg = RECORD END;
 DrawMsg = RECORD (Msg) END;
 WriteMsg = RECORD (Msg) R: Files.Rider END ;

 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;

 58

 handle: PROCEDURE (obj: Object; VAR M: Msg);
 next: Object
 END ;

PROCEDURE Handler (obj: Object; VAR M: Msg);
 (*this procedure is assigned to the handle field of every line object*)
BEGIN
 IF M IS DrawMsg THEN drawLine(obj(Line))
 ELSIF M IS WriteMsg THEN writeLine(obj(Line), M(WriteMsg).R)
 ELSE ...
 END
END ;

PROCEDURE drawGraphic(first: Objec; VAR M: Msg);
 VAR obj: Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO obj.handle(obj, M); obj := obj.next END
END drawGraphics

In the present system, a combination of the two schemes presented so far is used. It eliminates the
need for individual method fields in each object record as well as the cascaded IF statement for
discriminating among the message types. Yet it allows further addition of new methods for later
extensions without the need to change the object's declaration. The technique used is to include a
single field (called do) in each record (analogous to the handler). This field is a pointer to a method
record containing the procedures declared for the base type. At least one of them uses a message
parameter, i.e. a parameter of record structure that is extensible.

TYPE Method = POINTER TO MethodDesc;
 Msg = RECORD END;
 Context = RECORD END;

 Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 do: Method; next: Object
 END;

MethodDesc = RECORD
 new: Modules.Command;
 copy: PROCEDURE (obj, to: Object);
 draw, handle: PROCEDURE (obj: Object; VAR M: Msg);
 selectable: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 read: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write: PROCEDURE (obj: Object; cno: INTEGER;
 VAR R: Files.Rider; VAR C: Context);
 END

A single method instance is generated when a new object type is created, typically in the initialization
sequence of the concerned module. When a new object is created, a pointer to this record is
assigned to the do field of the new object descriptor. A call then has the form obj.do.write(obj, R).
This example exhibits the versatility of Oberon's type extension and procedure variable features very
well, and it does so without hiding the data structures involved in a dispensible, built-in run-time
mechanism.

The foregoing deliberations suggest the system's modular structure shown in Figure 13.3.:

 59

Figure 13.3 Clients of module Graphics

The modules in the top row implement the individual object types' methods, and additionally provide
commands, in particular Make for creating new objects. The base module specifies the base types
and procedures operating on graphics as a whole.

Our system, however, deviates from this scheme somewhat for several reasons:

1. Implementation of the few methods requires relatively short programs for the basic objects.
Although a sensible modularization is desirable, we wish to avoid an atomization, and therefore
merge parts that would result in tiny modules with the base module.

2. The elements of a graphic refer to fonts used in captions and to libraries used in macros. The
writing and reading procedures therefore carry a context consisting of fonts and libraries as an
additional parameter. Routines for mapping a font (library) to a number according to a given
context on output, and a number to a font (library) on input are contained in module Graphics.

3. In the design of the Oberon System, a hierarchy of four modules has proven to be most
appropriate:

0. Module with base type handling the abstract data structure.
1. Module containing procedures for the representation of objects in frames (display handling).
2. Module containing the primary command interpreter and connecting frames with a viewer.
3. A command module scanning command lines and invoking the appropriate interpreters.

The module hierarchy of the Graphics System is here shown together with its analogy, with the Text
System:

 Function Graphics Text

3. Command Scanner Draw Edit
2. Viewer Handler MenuViewers MenuViewers
1. Frame Handler GraphicFrames TextFrames
0. Base Graphics Texts

As a result, module Graphics does not only contain the base type Object, but also its extensions Line
and Caption (and Macro). Their methods are also defined in Graphics, with the exception of drawing
methods, which are defined in GraphicFrames, because they refer to frames.

So far, we have discussed operations on individual objects and the structure resulting from the desire
to be able to add new object types without affecting the base module. We now turn our attention
briefly to operations on graphics as a whole. They can be grouped into two kinds, namely operations
involving a graphic as a set, and those applying to the selection, i.e. to a subset only.

The former kind consists of procedures Add, which inserts a new object, Draw, which traverses the
set of objects and invokes their drawing methods, ThisObj, which searches for an object at a given
position, SelectObj, which marks an object to be selected, SelectArea, which identifies all objects
lying within a given rectangular area and marks them, Selectable, a Boolean function, and
Enumerate, which applies the parametric procedure handle to all objects of a graphic. Furthermore,
the procedures Load, Store, Print, and WriteFile belong to this kind.

Lines Captions Macros other classes

TYPE Object,
Graph, Method

Graphics

 60

The set of operations applying to selected objects only consist of the following procedures: Deselect,
DrawSel (drawing the selection according to a specified mode), Change (changing certain attributes
of selected objects like width, font, color), Move, Copy, CopyOver (copying from one graphic into
another), and finally Delete. Also, there exists the important procedure Open which creates a new
graphic, either loading a graphic stored as a file, or generating an empty graphic.

The declaration of types and procedures that have emerged so far are summarized in the following
excerpt of the module's interface definition.

DEFINITION Graphics; (*excerpt without macros*)
 IMPORT Files, Fonts, Texts, Modules, Display;

 CONST NameLen = 32;

 TYPE Graph = POINTER TO GraphDesc;
 Object = POINTER TO ObjectDesc;
 Method = POINTER TO MethodDesc;

 ObjectDesc = RECORD
 x, y, w, h: INTEGER;
 col: BYTE;
 selected, marked: BOOLEAN;
 do: Method
 END ;

 Msg = RECORD END ;
 WidMsg = RECORD (Msg) w: INTEGER END ;
 ColorMsg = RECORD (Msg) col: INTEGER END ;
 FontMsg = RECORD (Msg) fnt: Fonts.Font END ;
 Name = ARRAY NameLen OF CHAR;

 GraphDesc = RECORD sel: Object;
 time: INTEGER
 END ;

 Context = RECORD END ;

 MethodDesc = RECORD
 module, allocator: Name;
 new: Modules.Command;
 copy: PROCEDURE (obj, to: Object);
 draw, change: PROCEDURE (obj: Object; VAR msg: Msg);
 selectable: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 read: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write: PROCEDURE (obj: Object; cno: INTEGER; VAR R: Files.Rider; VAR C: Context);
 END ;

 Line = POINTER TO LineDesc;
 LineDesc = RECORD (ObjectDesc) END ;

 Caption = POINTER TO CaptionDesc;
 CaptionDesc = RECORD (ObjectDesc) pos, len: INTEGER END ;

 VAR width, res: INTEGER;
 T: Texts.Text;
 LineMethod, CapMethod, MacMethod: Method;

 PROCEDURE New(obj: Object);
 PROCEDURE Add (G: Graph; obj: Object);
 PROCEDURE Draw (G: Graph; VAR M: Msg);
 PROCEDURE ThisObj (G: Graph; x, y: INTEGER): Object;
 PROCEDURE SelectObj (G: Graph; obj: Object);
 PROCEDURE SelectArea (G: Graph; x0, y0, x1, y1: INTEGER);

 PROCEDURE Deselect (G: Graph);
 PROCEDURE DrawSel (G: Graph; VAR M: Msg);

 61

 PROCEDURE Change (G: Graph; VAR M: Msg);
 PROCEDURE Move (G: Graph; dx, dy: INTEGER);
 PROCEDURE Copy (Gs, Gd: Graph; dx, dy: INTEGER);
 PROCEDURE Delete (G: Graph);

 PROCEDURE FontNo (VAR W: Files.Rider; VAR C: Context; fnt: Fonts.Font): INTEGER;
 PROCEDURE WriteObj (VAR W: Files.Rider; cno: INTEGER; obj: Object);
 PROCEDURE Store (G: Graph; VAR W: Files.Rider);
 PROCEDURE WriteFile (G: Graph; name: ARRAY OF CHAR);
 PROCEDURE Font (VAR R: Files.Rider; VAR C: Context): Fonts.Font;
 PROCEDURE Load (G: Graph; VAR R: Files.Rider);
 PROCEDURE Open (G: Graph; name: ARRAY OF CHAR);
END Graphics.

13.4. Displaying graphics
The base module Graphics defines the representation of a set of objects in terms of a data structure.
The particulars are hidden and allow the change of structural representation by an exchange of this
module without affecting its clients. The problems of displaying a graphic on a screen or a printed
page are not handled by this module; they are delegated to the client module GraphicFrames, which
defines a frame type for graphics which is an extension of Display.Frame, just like
TextFrames.Frame is an extension of Display.Frame. In contrast to text frames, however, a graphic
instead of a text is associate with it.

FrameDesc = RECORD (Display.FrameDesc)
 graph: Graphics.Graph;
 Xg, Yg, X1, Y1, x, y, col: INTEGER;
 marked, ticked: BOOLEAN;
 mark: LocDesc
 END

Every frame specifies its coordinates X, Y within the display area, its size by the attributes W (width)
and H (height), and its background color col. Just as a frame represents a (rectangular) section of
the entire screen, it also shows an excerpt of the drawing plane of the graphic. The coordinate origin
need coincide with neither the frame origin nor the display origin. The frame's position relative to the
graphic plane's origin is recorded in the frame descriptor by the coordinates Xg, Yg.

The additional, redundant attributes x, y, X1, Y1 are given by the following invariants, and they are
recorded in order to avoid their frequent recomputation.

X1 = X + W, Y1 = Y + H
x = X + Xg, y = Y1 + Yg

X and Y (and hence also X1 and Y1) are changed when a viewer is modified, i.e. when the frame is
moved or resized. Xg and Yg are changed when the graph's origin is moved within a frame. The
meaning of the various values is illustrated in Figure 13.4.

 62

Figure 13.4 Frame and graph coordinates

As a consequence, the display coordinates u, v of an object z of a graph displayed in a frame f are
computed as

u = z.x + f.x, v = z.y + f.y

In order to determine whether an object z lies within a frame f, the following expression must hold:

(f.X <= u) & (u + z.w <= f.X1) & (f.Y <= v) & (v + z.h <= f.Y1)

The record field marked indicates whether or not the frame contains a caret. Its display position is
recorded in the field called mark. A frame may contain several (secondary) carets; they form a list of
location descriptors.

When an object is displayed (drawn), its state must be taken into consideration in order to provide
visible user feedback. The manner in which selection is indicated, however, may vary among
different object types. This can easily be realized, because every object (type) is associated with an
individual drawing procedure. The following visualizations of selection have been chosen:

Selected lines are shown in a grey tone (raster pattern).
Selected captions are shown with "inverse video".

Change of state is a relatively frequent operation, and if possible a complete repainting of the
involved objects should be avoided for reasons of efficiency. Therefore, procedures for drawing an
object are given a mode parameter, in addition to the obvious object and frame parameters. The
parameters are combined into the message record of type DrawMsg.

DrawMsg = RECORD (Graphics.Msg)
 f: Frame;
 mode, x, y, col: INTEGER
 END

The meaning of the mode parameter's four possible values are the following:

mode = 0: draw object according to its state,
mode = 1: draw reflecting a transition from normal to selected state,
mode = 2: draw reflecting a transition from selected to normal state,
mode = 3: erase.

In the case of captions, for instance, the transitions are indicated by simply inverting the rectangular
area covered by the caption. No rewriting of the captions' character patterns is required.

Graph origin

Frame origin

Display origin

x, y

X, Y

X1, Y1

Xg, Yg

 63

A mode parameter is also necessary for reflecting object deletion. First, the selected objects are
drawn with mode indicating erasure. Only afterwards are they removed from the graphic's linked list.

Furthermore, the message parameter of the drawing procedure contains two offsets x and y. They
are added to the object's coordinates, and their significance will become apparent in connection with
macros. The same holds for the color parameter.

The drawing procedures are fairly straight-forward and use the four basic raster operations of module
Display. The only complication arises from the need to clip the drawing at the frame boundaries. In
the case of captions, a character is drawn only if it fits into the frame in its entirety. The raster
operations do not test (again) whether the indicated position is valid.

At this point we recall that copies of a viewer (and its frames) can be generated by the System.Copy
command. Such copies display the same graphic, but possibly different excerpts of them. When a
graphic is changed by an insertion, deletion, or any other operation, at a place that is visible in
several frames, all affected views must reflect the change. A direct call to a drawing procedure
indicating a frame and the change does therefore not suffice. Here again, the object-oriented style
solves the problem neatly: In place of a direct call a message is broadcast to all frames, the message
specifying the nature of the required updates.

The broadcast is performed by the general procedure Viewers.Broadcast(M). It invokes the handlers
of all viewers with the parameter M. The viewer handlers either interpret the message or propagate it
to the handlers of their subframes. Procedure obj.handle is called with a control message as
parameter when pointing at the object and clicking the middle mouse button. This allows control to
be passed to the handler of an individual object.

The definition of module GraphicFrames is summarized by the following interface:
DEFINITION GraphicFrames;
 IMPORT Display, Graphics;

 TYPE Frame = POINTER TO FrameDesc;
 Location = POINTER TO LocDesc;

 LocDesc = RECORD
 x, y: INTEGER;
 next: Location
 END ;

 FrameDesc = RECORD (Display.FrameDesc)
 graph: Graphics.Graph;
 Xg, Yg, X1, Y1, x, y, col: INTEGER;
 marked, ticked: BOOLEAN;
 mark: LocDesc
 END ;

 (*mode = 0: draw according to selected, 1: normal -> selected, 2: selected -> normal, 3: erase*)

 DrawMsg = RECORD (Graphics.Msg)
 f: Frame;
 x, y, col, mode: INTEGER
 END ;

 PROCEDURE Restore (F: Frame);
 PROCEDURE Focus (): Frame;
 PROCEDURE Selected (): Frame;
 PROCEDURE This(x, y: INTEGER): Frame;
 PROCEDURE Draw (F: Frame);
 PROCEDURE Erase (F: Frame);
 PROCEDURE DrawObj (F: Frame; obj: Graphics.Object);
 PROCEDURE EraseObj (F: Frame; obj: Graphics.Object);
 PROCEDURE Change (F: Frame; VAR msg: Graphics.Msg);
 PROCEDURE Defocus (F: Frame);
 PROCEDURE Deselect (F: Frame);
 PROCEDURE Macro (VAR Lname, Mname: ARRAY OF CHAR);

 64

 PROCEDURE Open (G: Frame; graph: Graphics.Graph);
END GraphicFrames.

Focus and Selected identify the graphic frame containing the caret, or containing the latest selection.
Draw, Erase, and Handle apply to the selection of the specified frame's graphic. And Open
generates a frame displaying the specified graphic.

13.5. The user interface
Although the display is the prime constituent of the interface between the computer and its user, we
chose the title of this chapter for a presentation primarily focussed on the computer's input, i.e. on its
actions instigated by the user's handling of keyboard and mouse, the editing operations. The design
of the user interface plays a decisive role in a system's acceptance by users. There is no fixed set of
rules which determine the optimal choice of an interface. Many issues are a matter of subjective
judgement, and all too often convention is being mixed up with convenience. Nevertheless, a few
criteria have emerged as fairly generally accepted.

We base our discussion on the premise that input is provided by a keyboard and a mouse, and that
keyboard input is essentially to be reserved for textual input. The critical issue is that a mouse - apart
from providing a cursor position - allows to signal actions by the state of its keys. Typically, there are
far more actions than there are keys. Some mice feature a single key only, a situation that we deem
highly unfortunate. There are, however, several ways to "enrich" key states:

1. Position. Key states are interpreted depending on the current position of the mouse represented
by the cursor. Typically, interpretation occurs by the handler installed in the viewer covering the
cursor position, and different handlers are associated with different viewer types. The handler
chosen for interpretation may even be associated with an individual (graphic) object and depend
on that object's type.

2. Multiple clicks. Interpretation may depend on the number of repeated clicks (of the same key),
and/or on the duration of clicks.

3. Interclicks. Interpretation may depend on the combination of keys depressed until the last one is
released. This method is obviously inapplicable for single-key mice.

Apart from position dependence, we have quite successfully used interclicks. A ground rule to be
observed is that frequent actions should be triggered by single-key clicks, and only variants of them
should be signalled by interclicks. The essential art is to avoid overloading this method.

Less frequent operations may as well be triggered by textual commands, i.e. by pointing at the
command word and clicking the middle button. Even for this kind of activation, Oberon offers two
variations:

1. The command is listed in a menu (title bar). This solution is favoured when the respective viewer is
itself a parameter to the command, and it is recommended when the command is reasonably
frequent, because the necessary mouse movement is relatively short.

2. The command lies elsewhere, typically in a viewer containing a tool text.

Lastly, we note that any package such as Draw is integrated within an entire system together with
other packages. Hence it is important that the rules governing the user interfaces of the various
packages do not differ unnecessarily, but that they display common ground rules and a common
design "philosophy". Draw's conventions were, as far as possible and sensible, adapted to those of
the text system. The right key serves for selection, the left for setting the caret, and the middle key
for activating general commands, in this case moving and copying the entire graphic. Inherently,
drawing involves certain commands that cannot be dealt with in the same way as for texts. A
character is created by typing on the keyboard; a line is created by dragging the mouse while holding
the left key. Interclicks left-middle and right-middle are treated in the same way as in the text system
(copying a caption from the selection to the caret), and this is not surprising, because text and
graphics are properly integrated, i.e. captions can be copied from texts into graphics and vice-versa.

 65

Using different conventions depending on whether the command was activated by pointing at the
caption within a text frame or within a graphics frame would be confusing indeed.

13.6. Macros
For many applications it is indispensible that certain sets of objects may be named and used as
objects themselves. Such a named subgraph is called a macro. A macro thus closely mirrors the
sequence of statements in a program text that is given a name and can be referenced from within
other statements: the procedure. The notion of a graphic object becomes recursive, too. The facility
of recursive objects is so fundamental that it was incorporated in the base module Graphics as the
third class of objects.

Its representation is straight-forward: in addition to the attributes common to all objects, a field is
provided storing the head of the list of elements which constitute the macro. In the present system, a
special node is introduced representing the head of the element list. It is of type MacHeadDesc and
carries also the name of the macro and the width and height of the rectangle covering all elements.
These values serve to speed up the selection process, avoiding their recomputation by scanning the
entire element list.

The recursive nature of macros manifests itself in recursive calls of display procedures. In order to
draw a macro, drawing procedures of the macro's element types are called (which may be macros
again). The coordinates of the macro are added to the coordinates of each element, which function
as offsets. The color value of the macro, also a field of the parameter of type DrawMsg, overrides the
colors of the elements. This implies that macros always appear monochrome.

An application of the macro facility is the design of schematics of electronic circuits. Circuit
components correspond to macros. Most components are represented by a rectangular frame and
by labelled connectors (pins). Some of the most elementary components, such as gates, diodes,
transistors, resistors, and capacitors are represented by standardized symbols. Such symbols, which
may be regarded as forming an alphabet of electronic circuit diagrams, are appropriately provided in
the form of a special font, i.e. a collection of raster patterns. Three such macros are shown in Figure
13.5, together with the components from which they are assembled. The definitions of the data types
involved are:

Macro = POINTER TO MacroDesc;
MacroDesc = RECORD (ObjectDesc) mac: MacHead END ;

MacHead = POINTER TO MacHeadDesc;
MacHeadDesc = RECORD name: Name;
 w, h: INTEGER; lib: Library
 END ;

Library = POINTER TO LibraryDesc;
LibraryDesc = RECORD name: Name END

Procedure DrawMac(mh, M) displays the macro with head mh according to the draw message
parameter M which specifies a frame, a position within the frame, a display mode, and an overriding
color.

In the great majority of applications, macros are not created by their user, but are rather provided
from another source, in the case of electronic circuits typically by the manufacturer of the
components represented by the macros. As a consequence, macros are taken from a collection
(inappropriately) called a library. In our system, a macro is picked from such a collection by the
command Draw.Macro with a library name and a macro name as parameters. It inserts the specified
macro at the place of the caret by calling GraphicFrames.Macro, which in turn calls Graphics.Add.

At last, we mention that selection of a macro is visualized by covering with a dot pattern the entire
rectangular area occupied by the macro. This emphasizes the fact that the macro constitutes an
object as a whole.

 66

The design of new macros is a relatively rare activity. Macros are used rather like characters of a
font; the design of new macros and fonts is left to the specialist. Nevertheless, it was decided to
incorporate the ingredients necessary for macro design in the basic system. They consist of a few
procedures only which are used by a tool module called MacroTool (see Section 16.3).

MakeMac integrates all elements lying within a specified rectangular area into a new macro.
OpenMac reverses this process by disintegrating the macro into its parts. InsertMac inserts a
specified macro into a library. NewLib creates a new, empty library, and StoreLib generates a library
file containing all macros currently loaded into the specified library. The details of these operations
may be examined in the program listings provided later in this Chapter. Summarizing, the following
procedures are exported from module Graphics related to handling macros:

PROCEDURE GetLib(name: ARRAY OF CHAR; replace: BOOLEAN; VAR Lib: Library);
PROCEDURE ThisMac(L: Library; Mname: ARRAY OF CHAR): MacHead;
PROCEDURE DrawMac(mh: MacHead; VAR M: Msg);

and the following are added for creating new macros and libraries:
PROCEDURE NewLib(Lname: ARRAY OF CHAR): Library;
PROCEDURE StoreLib(L: Library; Fname: ARRAY OF CHAR);
PROCEDURE RemoveLibraries;
PROCEDURE OpenMac(mh: MacHead; G: Graph; x, y: INTEGER);
PROCEDURE MakeMac(G: Graph; x, y, w, h: INTEGER; Mname: ARRAY OF CHAR): MacHead;
PROCEDURE InsertMac(mh: MacHead; L: Library; VAR new: BOOLEAN);

13. 7. Object classes
Although surprisingly many applications can be covered satisfactorily with the few types of objects
and the few facilities described so far, it is nevertheless expected that a modern graphics system
allow the addition of further types of objects. The emphasis lies here on the word addition instead of
change. New facilities are to be providable by the inclusion of new modules without requiring any
kind of adjustment, not even recompilation of the existing modules. In practice, their source code
would quite likely not be available. It is the triumph of the object-oriented programming technique that
this is elegantly possible. The means are the extensible record type and the procedure variable,
features of the programming language, and the possibility to load modules on demand from
statements within a program, a facility provided by the operating environment.

We call, informally, any extension of the type Object a class. Hence, the types Line, Caption, and
Macro constitute classes. Additional classes can be defined in other modules importing the type
Object. In every such case, a set of methods must be declared and assigned to a variable of type
MethodDesc. They form a so-called method suite. Every such module must also contain a
procedure, typically a command, to generate a new instance of the new class. This command, likely
to be called Make, assigns the method suite to the do field of the new object.

This successful decoupling of additions from the system's base suffices, almost. Only one further link
is unavoidable: When a new graphic, containing objects of a class not defined in the system's core,
is loaded from a file, then that class must be identified, the corresponding module with its handlers
must be loaded - this is called dynamic loading - and the object must be generated (allocated).
Because the object in question does not already exist at the time when reading the object's attribute
values, the generating procedure cannot possibly be installed in the very same object, i.e. it cannot
be a member of the method suite. We have chosen the following solution to this problem:

1. Every new class is implemented in the form of a module, and every class is identified by the
module name. Every such module contains a command whose effect is to allocate an object of the
class, to assign the message suite to it, and to assign the object to the global variable
Graphics.new.

2. When a graphics file is read, the class of each object is identified and a call to the respective
module's allocation procedure delivers the desired object. The call consists of two parts: a call to
Modules.ThisMod, which may cause the loading of the respctive class module M, and a call of

 67

Modules.ThisCommand. Then the data of the base type Object are read, and lastly the data of the
extension are read by a call to the class method read.

The following may serve as a template for any module defining a new object class X. Two examples
are given in Section 13.9, namely Rectangles and Curves.

MODULE Xs;
 IMPORT Files, Oberon, Graphics, GraphicFrames;

 TYPE X* = POINTER TO XDesc;
 XDesc = RECORD (Graphics.ObjectDesc) (*additional data fields*) END ;

 VAR method: Graphics.Method;

 PROCEDURE New*;
 VAR x: X;
 BEGIN NEW(x); x.do := method; Graphics.new := x
 END New;

 PROCEDURE* Copy(obj, to: Graphics.Object);
 BEGIN to(X)^ := obj(X)^
 END Copy;

 PROCEDURE* Draw(obj: Graphics.Object; VAR msg: Graphics.Msg);
 BEGIN ...
 END Draw;

 PROCEDURE* Selectable(obj: Graphics.Object; x, y: INTEGER): BOOLEAN;
 BEGIN ...
 END Selectable;

 PROCEDURE* Change(obj: Graphics.Object; VAR msg: Graphics.Msg);
 BEGIN
 IF msg IS Graphics.ColorMsg THEN obj.col := msg(Graphics.ColorMsg).col
 ELSIF msg IS ... THEN ...
 END
 END Handle;

 PROCEDURE* Read(obj: Graphics.Object; VAR W: Files.Rider; VAR C: Context);
 BEGIN (*read X-specific data*)
 END Write;

 PROCEDURE* Write(obj: Graphics.Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Context);
 BEGIN Graphics.WriteObj(W, cno, obj); (*write X-specific data*)
 END Write;

 PROCEDURE Make*; (*command*)
 VAR x: X; F: GraphicFrames.Frame;
 BEGIN F := GraphicFrames.Focus();
 IF F # NIL THEN
 GraphicFrames.Deselect(F);
 NEW(x); x.x := F.mark.x - F.x; x.y := F.mark.y - F.y; x.w := ... ; x.h := ... ;
 x.col := Oberon.CurCol; x.do := method;
 GraphicFrames.Defocus(F); Graphics.Add(F.graph, x); GraphicFrames.DrawObj(F, x)
 END
 END Make;

BEGIN NEW(method); method.module := "Xs"; method.allocator := "New";
 method.copy := Copy; method.draw := Draw; method.selectable := Selectable;
 method.handle := Handle; method.read := Read; method.write := Write; method.print := Print
END Xs.

We wish to point out that also the macro and library facilities are capable of integrating objects of
new classes, i.e. of types not occurring in the declarations of macro and library facilities. The
complete interface definition of module Graphics is obtained from its excerpt given in Sect. 13.3,
augmented by the declarations of types and procedures in Sect. 13.6. and 13.7.

 68

13.8. The implementation

13.8.1. Module Draw
Module Draw is a typical command module whose exported procedures are listed in a tool text. Its
task is to scan the text containing the command for parameters, to check their validity, and to
activate the corresponding procedures, which primarily are contained in modules Graphics and
GraphicFrames. The most prominent among them is the Open command. It generates a new viewer
containing two frames, namely a text frame serving as menu, and a graphic frame.

We emphasize at this point that graphic frames may be opened and manipulated also by other
modules apart from Draw. In particular, document editors that integrate texts and graphics - and
perhaps also other entities - would refer to Graphics and GraphicFrames directly, but not make use
of Draw which, as a tool module, should not have client modules.

DEFINITION Draw;
 PROCEDURE Open;
 PROCEDURE Delete;
 PROCEDURE SetWidth;
 PROCEDURE ChangeColor;
 PROCEDURE Store;
 PROCEDURE Macro;

 PROCEDURE OpenMacro;
 PROCEDURE MakeMacro;
 PROCEDURE LoadLibrary;
END Draw.

13.8.2. Module GraphicFrames
Module GraphicFrames contains all routines concerned with displaying, visualizing graphic frames
and their contents, i.e. graphics. It also contains the routines for creating new objects of the base
classes, i.e. lines, captions, and macros. And most importantly, it specifies the appropriate frame
handler which interprets input actions and thereby defines the user interface. The handler
discriminates among the following message types:

1. Update messages. According to the id field of the message record, either a specific object or the
entire selection of a graphic are drawn according to a mode. The case id = 0 signifies a restoration
of the entire frame including all objects of the graphic.

2. Selection, focus, and position queries. They serve for the identification of the graphic frame
containing the latest selection, containing the caret (mark) or the indicated position. In order to
identify the latest selection, the time is recorded in the graph descriptor whenever a new selection
is made or when new objects are inserted.

3. Input messages. They originate from the central loop of module Oberon and indicate either a
mouse action (track message) or a keyboard event (consume message).

4. Control messages from Oberon. They indicate that all marks (selection, caret, star) are to be
removed (neutralize), or that the focus has to be relinquished (defocus).

5. Selection and copy messages from Oberon. They constitute the interface between the graphics
and the text system, and make possible identification and copying of captions between graphic and
text frames.

6. Modify messages from MenuViewers. They indicate that a frame has to be adjusted in size and
position because a neighbouring viewer has been reshaped, or because its own viewer has been
repositioned

7. Display messages. They originate from procedure InsertChar and handle the displaying of single
characters when a caption is composed (see below).

 69

The frame handler receiving a consume message interprets the request through procedure
InsertChar, and receiving a track message through procedure Edit. If no mouse key is depressed,
the cursor is simply drawn, and thereby the mouse is tracked. Instead of the regular arrow, a
crosshair is used as cursor pattern. Thereby immediate visual feedback is provided to indicate that
now mouse actions are interpreted by the graphics handler (instead of, e.g., a text handler). Such
feedback is helpful when graphic frames appear not only in a menuviewer, but as subframes of a
more highly structured document frame.

Procedure Edit first tracks the mouse while recording further key activities (interclicks) until all keys
are released. The subsequent action is determined by the perceived key clicks. The actions are (the
second key denotes the interclick):

keys = left set caret, if mouse was not moved, otherwise draw new line,
keys = left, middle copy text selection to caret position
keys = left, right set secondary caret (mark)
keys = middle move selection
keys = middle, left copy selection
keys = middle, right shift origin of graph
keys = right select (either object, or objects in area)
keys = right, middle copy selected text to caret position

When copying or moving a set of selected objects, it must be distinguished between the cases where
the source and the destination graphics are the same or are distinct. In the former case, source and
destination positions may lie in the same or in different frames.

Procedure InsertChar handles the creation of new captions. The actual character string is appended
to the global text T, and the new object records its position within T and its length.

A complication arises because the input process consists of as many user actions as there are
characters, and because other actions may possibly intervene between the typing. It is therefore
unavoidable to record an insertion state, which is embodied by the global variable newcap. When a
character is typed, and newcap = NIL, then a new caption is created consisting of the single typed
character. Subsequent typing results in appending characters to the string (and newcap). The
variable is reset to NIL, when the caret is repositioned. The BS character is interpreted as a
backspace by procedure DeleteChar.

Since the caption being generated may be visible simultaneously in several frames, its display must
be handled by a message. For this reason, the special message DispMsg is introduced, and as a
result, the process of character insertion turns out to be a rather complex action. To avoid even
further complexity, the restriction is adopted that all characters of a caption must use the same
attributes (font, color).

The definition of the interface of GraphicFrames is listed in Section 13.3.

13.8.3. Module Graphics
The preceding presentations of the interface definitions have explained the framework of the
graphics system and set the goals for their implementation. We recall that the core module Graphics
handles the data structures representing sets of objects without reliance on the specifications of
individual objects. Even the structural aspects of the object sets are not fixed by the interface.
Several solutions, and hence several implementations are imaginable.

Here we present the simplest solution for representing an abstract, unordered set: the linear, linked
list. It is embodied in the object record's additional, hidden field next. Consequently, a graphic is
represented by the head of the list. The type GraphDesc contains the hidden field first (see listing of
Graphics). In addition, the descriptor contains the exported field sel denoting a selected element, and
the field time indicating the time of its selection. The latter is used to determine the most recent
selection in various viewers.

 70

Additional data structures become necessary through the presence of macros and classes. Macros
are represented by the list of their elements, like graphics. Their header is of type MacHeadDesc in
analogy to GraphDesc. In addition to a macro's name, width, and height, it contains the field first,
pointing to the list's first element, and the field lib, referring to the library from which the macro stems.

A library descriptor is similarly structured: In addition to its name, the field first points to the list of
elements (macros) of the library, which are themselves linked through the field next. Fig. 13.6. shows
the data structure containing two libraries. It is anchored in the global variable firstLib.

Fig. 13.6 Data structure for two libraries, each with three macros

Libraries are permanently stored as files. It is evidently unacceptable that file access be required
upon every reference to a macro, e.g. each time a macro is redrawn. Therefore a library is loaded
into primary store, when one of its elements is referenced for the first time. Procedure ThisMac
searches the data structure representing the specified library and locates the header of the
requested macro.

We emphasize that the structures employed for macro and library representation remain hidden from
clients, just like the structure of graphics remains hidden within module Graphics. Thus, none of the
linkage fields of records (first, next, sel) are exported from the base module. This measure retains
the possibility to change the structural design decisions without affecting the client modules. But
partly it is also responsible for the necessity to include macros in the base module.

A large fraction of module Graphics is taken up by procedures for reading and writing files
representing graphics and libraries. They convert their internal data structure into a sequential form
and vice-versa. This would be a rather trivial task, were it not for the presence of pointers referring to
macros and classes. These pointers must be converted into descriptions that are position-
independent, such as names. The same problem is posed by fonts (which are also represented by
pointers).

Evidently, the replacement of every pointer by an explicit name would be an uneconomical solution
with respect to storage space as well as speed of reading and writing. Therefore, pointers to fonts

Lib0

Lib1

LibraryDesc

firstLib

next
MacHeadDesc

ObjectDesc

first

first

next

 71

and libraries - themselves represented as files - are replaced by indices to font and library
dictionaries. These dictionaries establish a context and are constructed while a file is read. They are
used only during this process and hence are local to procedure Load (or Open). For classes, a
dictionary listing the respective allocation procedures is constructed in order to avoid repeated calls
to determine the pertinent allocator.

When a graphics file is generated by procedure Store, local dictionaries are constructed of fonts,
libraries, and classes of objects that have been written onto the file. Upon encountering a caption, a
macro, or any element whose font, library, or class is not contained in the respective dictionary, a
pair consisting of index and name is emitted to the file, thereby assigning a number to each name.
These pairs are interspersed within the sequence of object descriptions.

When the graphic file is read, these pairs trigger insertion of the font, library, or class in the
respective dictionary, whereby the name is converted into a pointer to the entity, which is obtained by
a loading process embodied by procedures Fonts.This, GetLib, and GetClass. Both the Load and
Store procedures traverse the file only once. The files are self-contained in the sense that all external
quantities are represented by their names. The format of a graphics file is defined in Extended BNF
syntax as follows:

file = tag stretch.
stretch = {item} 255.
item = 0 0 fontno fontname | 0 1 libno libname | 0 2 classno classname allocname |
 1 data | 2 data fontno string | 3 data libno macname | classno data extension.
data = x y w h color.

All class numbers are at least 4; the values 1, 2, and 3 are assigned to lines, captions, and macros.
x, y, w, h are two-byte integer attributes of the base type Object. The attribute color takes a single
byte. The first byte of an item being 0 signifies that the item is an identification of a new font, library,
or class. If the second byte is 0, a new font is announced, if 1 a new library, and if 2 a new class of
elements.

The same procedures are used for loading and storing a library file. In fact, Load and Store read and
write a file stretch representing a sequence of elements which is terminated by a special value (255).
In a library file each macro corresponds to a stretch, and the terminator is followed by values
specifying the macro's overall width, height, and its name. The structure of library files is defined by
the following syntax:

libfile = libtag {macro}.
macro = stretch w h name.

The first byte of each element is a class number within the context of the file and identifies the class
to which the element belongs. An object of the given class is allocated by calling the class' allocation
procedure, which is obtained from the class dictionary in the given context. The class number is used
as dictionary index. The presence of the required allocation procedure in the dictionary is guaranteed
by the fact that a corresponding index/name pair had preceded the element in the file.

The encounter of such a pair triggers the loading of the module specifying the class and its methods.
The name of the pair consists of two parts: the first specifies the module in which the class is
defined, and it is taken as the parameter of the call to the loader (see procedure GetClass). The
second part is the name of the relevant allocation procedure which returns a fresh object to variable
Graphics.new. Thereafter, the data defined in the base type Object are read.

Data belonging to an extension follow those of the base type, and they are read by the extension's
read method. This part must always be headed by a byte specifying the number of bytes which
follow. This information is used in the case where a requested module is not present; it indicates the
number of bytes to be skipped in order to continue reading further elements.

A last noteworthy detail concerns the Move operation which appears as surprisingly complicated,
particularly in comparison with the related copy operation. The reason is our deviation from the
principle that a graphics editor must refrain from an interpretation of drawings. Responsible for this

 72

deviation was the circumstance that the editor was at first primarily used for the preparation of circuit
diagrams. They suggested the view that adjoining, perpendicular lines be connected. Consequently,
the horizontal or vertical displacement of a line was to preserve connections. Procedure Move must
therefore identify all connected lines, and subsequently extend or shorten them.

The definition of the interface of Graphics is listed in Section 13.3.

13.9. Rectangles and curves

13.9.1. Rectangles

In this section, we present two extensions of the basic graphics system which introduce new classes
of objects. The first implements rectangles which are typically used for framing a set of objects. They
are, for example, used in the representation of electronic components (macros, see Fig. 13.2). Their
implementation follows the scheme presented at the end of chapter 13.7 and is reasonably straight-
forward, considering that each rectangle merely consists of four lines. Additionally, a background
raster may be specified.

One of the design decisions occurring for every new class concerns the way to display the selection.
In this case we chose, in contrast to the cases of captions and macros, not inverse video, but a small
square dot in the lower right corner of the rectangle. The data type Rectangle contains one additional
field: lw indicates the line width.

In spite of the simplicity of the notion of rectangles, their drawing method is more complex than might
be expected. The reason is that drawing methods are responsible for appropriate clipping at frame
boundaries. In this case, some of the component lines may have to be shortened, and some may
disappear altogether.

Procedure Handle provides an example of a receiver of a control message. It is activated as soon as
the middle mouse button is pressed, in contrast to other actions, which are initiated after the release
of all buttons. Therefore, this message allows for the implementation of actions under control of
individual handlers interpreting further mouse movements. In this example, the action serves to
change the size of the rectangle, namely by moving its lower left corner.

DEFINITION Rectangles;
 TYPE Rectangle = POINTER TO RectDesc;

 RectDesc = RECORD (Graphics.ObjectDesc)
 lw: INTEGER
 END ;

 VAR method: Graphics.Method;

 PROCEDURE New;
 PROCEDURE Make;
END Rectangles.

13.9.2. Oblique lines and circles

The second extension to be presented is module Curves. It introduces two new kinds of objects:
lines which are not necessarily horizontal or vertical, and circles. All are considered to be variants of
the same type Curve, the variant being specified by the field kind of the object record. Selection is
indicated by a small rectangle at the end of a line and at the lowest point of a circle.

In order to avoid computations involving floating-point numbers and to increase efficiency,
Bresenham algorithms are used. The algorithm for a line defined by bx - ay = 0 (for b ≤ a) is given by
the following statements:

x := 0; y := 0; h := (b – a) DIV 2;
WHILE x <= a DO Dot(x, y);
 IF h <= 0 THEN INC(h, b) ELSE INC(h, b-a); INC(y) END ;

 73

 INC(x)
END

The Bresenham algorithm for a circle given by the equation x2 + y2 = r2 is:
x := r; y := 0; h := 1-r;
WHILE y <= x DO Dot(x, y);
 IF h < 0 THEN INC(h, 2*y + 3) ELSE INC(h, 2*(y-x)+5); DEC(x) END ;
 INC(y)
END

DEFINITION Curves;
 TYPE Curve = POINTER TO CurveDesc;

 CurveDesc = RECORD (Graphics.ObjectDesc)
 kind, lw: INTEGER
 END ;

 (*kind: 0 = up-line, 1 = down-line, 2 = circle*)

 VAR method: Graphics.Method;
 PROCEDURE MakeLine;
 PROCEDURE MakeCircle*;
END Curves.

 74

14 Building and maintenance tools
14.1. The Startup Process
An aspect usually given little attention in system descriptions is the process of how a system is
started. Its choice, however, is itself an interesting and far from trivial design consideration and will
be described here in some detail. Moreover, it directly determines the steps in which a system is
developed from scratch, mirroring the steps in which it builds itself up from a bare store to an
operating body.

The startup process typically proceeds in several stages, each of them bringing further facilities into
play, raising the system to a higher level towards completion. The term for this strategy is boot
strapping or, in modern computer jargon, booting.

Stage 0 is initiated when power is switched on or when the reset button is pressed and released. To
be precise, power-on issues a reset signal to all parts of the computer and holds it for a certain
time. Pushing the reset button therefore appears like a power-on without power having been
switched off. Release of the reset signal triggers the built-in FPGA hardware to load a short
configuration bit-stream from a ROM residing on the Spartan board, called the platform flash, into a
BRAM within the FPGA. This program is called boot loader. Being stored in a ROM, it is always
present. The BRAM is address-mapped onto an upper part of the address space, and the RISC
processor starts execution at this address.

In Stage 1 the boot loader loads the inner core, which consists of modules Kernel, FileDir, Files,
and Modules. The loader first inspects the link register. If its value is 0, a cold start is indicated. (If
the value of the link register is not 0, this signals an abort caused by pressing button 3 on the
board. Then loading is skipped and control is immediately returned to the Oberon command loop).
The disk (SD-card, SPI) is initialized.

The boot loader terminates with a branch to location 0, which transfers control to the just loaded
module Modules, the regular loader.

Stage 2 starts with the initialization body of module Modules which calls the bodies of Kernel,
FileDir and Files, establishing a working file system. Then it calls itself, requesting to load the
central module Oberon. This implicitly causes the loading of its own imports, namely Input, Display,
Viewers, Fonts, and Texts, establishing a working viewer and text system.

This loading of the outer core must be interpreted as the continuation of the loading of the inner
core. To allow proper continuation, the boot loader has deposited the following data in fixed
locations:

 0 A branch instruction to the initializing body of module Modules
12 The limit of available memory
16 The address of the end of the module space loaded
20 The current root of the links of loaded modules
24 The current limit of the module area

In Stage 3, Oberon calls the loader to load the tool module System, and with it its imports
MenuViewers and TextFrames. The initialization of System causes the opening of the viewers for
the system tool and the system log. Control then returns to Oberon and its central loop for polling
input events. Normal operation begins. The booting process is summarized in Figure 14.1.

 75

 Figure 14.1 The four stages of the booting process

This describes the normal case of startup. But, how did the boot loader ever get into the platform-
flash, and how did the inner core ever get into the boot area of the disk, and how did the files of the
outer core get into the file store? In fact, how did the file store get initialized? This is described in
the following section on building tools.

Precisely to solve this problem, the boot loader has been provided with a second source of the boot
data. Instead of from the disk, it may be fetched over a data link, in this case the RS-232 data line.
This choice is set by switch 0.

0 load from the "boot track" of the disk (sectors 2 - 63)
1 load from the RS-232 line (or a network, if available)

In case 1, the data stream originates at a host computer, on which presumably the boot file had
been generated or even the entire system had been built.

In order to keep the boot loader as simple as possible - remember that it is placed in a small flash
memory on every workstation and therefore cannot be changed without a special effort - the format
of the byte stream representing the inner core must be simple. We have chosen the following
structure, which had never to be changed during the entire development effort of the Oberon
System because of both its simplicity and generality:

BootFile = {block}.
block = size address {byte}. (size and address are words)

The address of the last block, distinguished by size = 0, is interpreted as the address of the starting
point of Stage 2.

In this step, a module called Oberon0 is used as the top module, rather than Modules. This module
communicates with the host computer via the RS-232 line and in addition features various
inspection tools. In particular it contains a command copying the just loaded inner core into the disk
(see also Section 14.2).

Flash ROM

Stage 0

FPGA-HW

Config mem

RISC

Disk
Boot area

Memory

Kernel
FileDir
Files

Modules

Disk

Memory

Input
Display
Viewers
Fonts
Texts

Oberon

Disk

Memory

MenuViewers
TextFrames

System

Stage 1

Stage 2

Stage 3

BRAM

boot loader

 76

Still, how did the hardware configuration data and the boot loader get into the Flash ROM? This
step requires the help of proprietary tools of the FPGA manufacturer. Regrettably, their incantation
ceremony typically is rather complex.

After all necessary Verilog modules have been synthesized, the result is the configuration file
RISCTop.bit. The necessary source files are

RISCTop.v, RISC.v, Multiplier.v, Divider.v, FPAdder.v. FP.Multiplier.v, FP.Divider.v, dbram32.v
RS232R.v, RS232T.v, SPI.v, XGS.v, PS2.v, RISC.ucf

Thereafter, the boot loader is compiled and, together with the result of the configuration of the RISC
hardware, loaded into the configuration memory of the FPGA. This Stage 0 is partly done with
proprietory software (dependant on the specific FPGA) and is described in a separate installation
guide.

Figure 14.2 Booting from host computer

A simple boot loader reading from the RS-232 line and using the stream format described above is
shown here:

MODULE* BootLoad;
 IMPORT SYSTEM;
 CONST MT = 12; SP = 14; MemLim = 0E7F00H;
 swi = -60; led = -60; data = -56; ctrl = -52; (*device addresses*)

 PROCEDURE RecInt(VAR x: INTEGER);
 VAR z, y, i: INTEGER;
 BEGIN z := 0; i := 4;
 REPEAT i := i-1;
 REPEAT UNTIL SYSTEM.BIT(ctrl, 0);
 SYSTEM.GET(data, y); z := ROR(z+y, 8)
 UNTIL i = 0;
 x := z
 END RecInt;

 PROCEDURE Load;
 VAR len, adr, dat: INTEGER;
 BEGIN RecInt(len);
 WHILE len > 0 DO
 RecInt(adr);
 REPEAT RecInt(dat); SYSTEM.PUT(adr, dat); adr := adr + 4; len := len - 4 UNTIL len = 0;
 RecInt(len)

RISC.bit

Stage 1

Config mem

FPGA config

RS-232 link

Memory

Kernel
FileDir
Files

Modules
Oberon0

Stage 2

BRAM

boot loader

Xilinx tool
download.cmd

FlashRISC.cmd

RISCTop.bit ins1.mem

RISC.bit

Stage 0

 77

 END ;
 SYSTEM.GET(4, adr); SYSTEM.LDREG(13, adr); SYSTEM.LDREG(12, 20H)
 END Load;

BEGIN SYSTEM.LDREG(SP, MemLim); SYSTEM.LDREG(MT, 20H); SYSTEM.PUT(led, 128);
END BootLoad.

Another detail that must not be ignored is the handling of traps. They are implemented as a single
BRL instruction, jumping conditionally to the address stored in register MT, that is, to entry 0 of the
module table (which is not a module address). This address is deposited by the initialization of
module System, which contains the trap handler. However, traps may also occur during the startup
process. So, a temporary trap handler must also be installed at the very start, that is, when
initializing Kernel.

Finally, it is worth mentioning that small Oberon programs can also be loaded and executed without
the Oberon core. In fact, the boot loader is just one such example. Programs of this kind must be
marked by an asterisk immediately after the symbol MODULE. This causes the compiler to
generate a different starting sequence Such programs are loaded, like the boot loader in Stage 0,
by the Xilinx downloader. They must not import other modules.

14.2. Building Tools

Let us summarize the prerequisites for startup:

0. The FPGA configuration and bootloader must reside in the ROM (platform flash)
1. The boot file must reside on the boot area of the disk.
2. The modules of the outer core must reside in the file system.
3. The default font and System.Tool must be present in the file system.

These conditions are usually met. But they are not satisfied, if either a new, bare machine is
present, or if the disk store is defective. In these cases, the prerequisites must be established with
the aid of suitable tools. The tools needed for the case of the bare machine or the incomplete file
store are called building tools, those required in the case of defects are called maintenance tools.

Building tools allow to establish the preconditions for the boot process on a bare machine.
Establishing condition 0 requires a tool for downloading the hardware configuration of the FPGA
resulting from circuit synthesis, and it requires a compiler for generating the boot loader. Condition
0 is established in Stage 0.

Establishing condition 1 requires a tool for composing the boot file, and one to load it into the boot
area. The former is the compiler, presumably running on a host computer. The resulting files are
linked by a linker (ORL) generating a "binary" file. This file is then downloaded from the host
computer to the RISC running its boot loader. Here we use an extended inner core, where the main
module is not Modules, but Oberon0. The reason is that Oberon0 allows to perform the subsequent
stages by accepting commands over a communication channel (here the RS-232 line). Hence, for
the following stages, the tool on the RISC is Oberon0, communicating with the host computer's
module ORC.

Establishing condition 2 implies the building of a file directory and the loading of files. The pair
Oberon0 and ORC contains commands for initializing a file system, for loading files over the line
connection, and for moving the inner core to the disk's boot area. In addition, Oberon0 contains
further commands for file system, memory and disk inspection. Note that loading (and starting)
Oberon0 automatically starts the entire Oberon system.

There remains the important question of how Oberon0 is loaded onto a bare machine. It is done by
the boot loader with switch 1 being up. The boot file contains the inner core with the top module
being Oberon0 rather than Modules. The procedure is the following:

1. Select the alternative boot source by setting switch0 = 1.
2. Reset and send the boot file from the host The boot file is transferred and Oberon0 is started.

 78

3. Read all files from the host, (which supposedly holds all files needed for the outer core).
4. Invoke the command which loads Oberon. This loads the outer core, sets up the display, and

starts the central loop.

A more modern solution would be to select the network as alternative boot file source. We rejected
this option in order to keep net access routines outside the ROM, in order to keep the startup of a
computer independent of the presence of a network and foreign sources, and also in consideration
of the fact that there exist machines which operate in a stand-alone mode. As it turns out, the need
for the alternative boot file source arises very rarely.

The boot linker ORL, presumably running on a host computer, where the FPGA-tools are available,
is almost identical to the module loader, with the exception that object code is not deposited in
newly allocated blocks, but is output in the form a file. The name of the top module of the inner core
is supplied as parameter.

ORL.Link Modules generates the regular boot file
ORL.Link Oberon0 generates the build-up boot file

Oberon0 imports two modules taking care of communication with ORL on the host computer. They
are the basic module RS232, and module PCLink1 for file transfer. The latter constitutes a task,
accepting commands over the line from ORL. Their interfaces are shown below:

DEFINITION RS232;
 PROCEDURE Send(x: BYTE);
 PROCEDURE Rec(VAR x: BYTE);
 PROCEDURE SendInt(x: INTEGER);
 PROCEDURE SendHex(x: INTEGER);
 PROCEDURE SendReal(x: REAL);
 PROCEDURE SendStr(x: ARRAY OF CHAR);
 PROCEDURE RecInt(VAR x: INTEGER);
 PROCEDURE RecReal(VAR x: REAL);
 PROCEDURE RecStr(VAR x: ARRAY OF CHAR);
 PROCEDURE Line;
 PROCEDURE End;
END RS232.

DEFINITION PCLink1;
 PROCEDURE Run*;
 PROCEDURE Stop*;
END PCLink1.

The command interpreter is a simple loop, accepting commands specified by an integer followed by
parameters which are either integers or names. User-friendliness was not attributed any importance
at this point, and it would indeed be merely luxury. We refrain from elaborating on further details
and concentrate on providing a list of commands provided by Oberon0. This should give the reader
an impression of the capabilities and limitations of this tool module for system initiation and for error
searching. (name stands for a string, and a, secno, m, n stand for integers).

 parameters action
0 s send and mirror s
1 a, n show (in hex) M[a], M[a+4], ... , M[a + n*4]
2 w fill display with words w
3 secno show disk sector
4 filename read file
6 - start PC-link
7 - show allocation, nof sectors, switches, and timer
10 - list modules
11 modname list commands
12 prefix list files (enumerate directory)
13 filename delete file

 79

20 modname load module
21 modname unload module
22 name call command

50 adr, list of values write memory
51 adr, n clear memory (n words)
52 secno, list of values write sector
53 secno, n clear sector (n words)

100 - load boot track
101 - clear file directory

Oberon0 imports modules Kernel, FileDir, Files, Modules, RS232, PCLink1. This is the inner core
plus facilities for communication.

14.3. Maintenance Tools
An important prerequisite for Stage 2 (and the following stages) in the boot process has not been
mentioned above. Recall that the initialization of module FileDir constructs the disk sector
reservation table in the Kernel from information contained on the disk. Obviously, its prerequisite is
an intact, consistent file directory. A single unreadable, corrupted file directory or file header sector
lets this process fail, and booting becomes impossible. To cope with this (fortunately rare) situation,
a maintenance tool has been designed: module DiskCheck.

DiskCheck is organized similarly to Oberon0 as a simple command interpreter, but it imports only
Kernel and RS232. Hence, booting involves only Stages 1 and 2 without any access to the disk.
Operating DiskCheck requires care and knowledge of the structure of the file system (Chapter 7).
The available commands are the following:

 parameters action
0 s send and mirror integer (test)
1 a, n show (in hex) M[a], M[a+4], ... , M[a + n*4]
2 secno show disk sector
3 secno show head sector
4 secno show directory sector
5 - traverse directory
6 secno clear header sector
7 - clear directory (root page)

The essential command is the file directory traversal (5). It lists all faulty directory sectors, showing
their numbers. It also lists faulty header sectors. No changes are made to the file system.

If a faulty header is encountered, it can subsequently be cleared (6). Thereby the file is lost. It is not
removed from the directory, though. But its length will be zero.

Program DiskCheck must be extremely robust. No data read can be assumed to be correct, no
index can be assumed to lie within its declared bounds, no sector number can be assumed to be
valid, and no directory or header page may be assumed to have the expected format. Guards and
error diagnostics take a prominent place.

Whereas a faulty sector in a file in the worst case leads to the loss of that file, a fault in a sector
carrying a directory page is quite disastrous. Not only because the files referenced from that page,
but also those referenced from descendant pages become inaccessible. A fault in the root page
even causes the loss of all files. The catastrophe is of such proportions, that measures should be
taken even if the case is very unlikely. After all, it may happen, and it indeed has occurred.

The only way to recover files that are no longer accessible from the directory is by scanning the
entire disk. In order to make a search at all possible, every file header carries a mark field that is
given a fixed, constant value. It is very unlikely, but not entirely impossible, that data sectors which
happen to have the same value at the location corresponding to that of the mark, may be mistaken
to be headers.

 80

The tool performing such a scan is called Scavenger. It is, like DiskCheck, a simple command
interpreter with the following available commands:

 parameters action
0 s send and mirror integer (test)
1 n Scan the first n sectors and collect headers
2 - Display names of collected files
3 - Build new directory
4 - Transfer new directory to the disk
5 - Clear display

During the scan, a new directory is gradually built up in primary store. Sectors marked as headers
are recorded by their name and creation date. The scavenger is the reason for recording the file
name in the header, although it remains unused there by the Oberon System. Recovery of the date
is essential, because several files with the same name may be found. If one is found with a newer
creation date, the older entry is overwritten.

Command W transfers the new directory to the disk. For this purpose, it is necessary to have free
sectors available. These have been collected during the scan: both old directory sectors (identified
by a directory mark similar to the header mark) and overwritten headers are used as free locations.

The scavenger has proven its worth on more than one occasion. Its main drawback is that it may
rediscover files that had been deleted. The deletion operation by definition affects only the
directory, but not the file. Therefore, the header carrying the name remains unchanged and is
discovered by the scan. All in all, however, it is a small deficiency.

Reference

1. N. Wirth. Designing a System from Scratch. Structured Programming, 1, (1989), 10-18.

 81

15 Tool and service modules

In this chapter, a few modules are presented that do not belong to Oberon's system core.
However, they belong to the system in the sense of being basic, and of assistance in some way,
either to construct application programs, to communicate with external computers, or to analyze
existing programs.

15.1. Basic mathematical functions
Module Math contains the basic standard functions that had been postulated already in 1960 by
Algol 60. They are

sqrt(x) the square root
exp(x) the exponential function
ln(x) the natural logarithm
sin(x) the sine function
cos(x) the cosine function

They are presented here only briefly without discussing their approximation methods. However, we
point out how advantage can be taken from knowledge about the internal representation of
floating-point numbers.

15.1.1. Conversion between integers and floating-point numbers

The Oberon System adopts the standard format postulated by IEEE. Here we restrict it to the 32-
bit variant. A floating-point number x consists of 3 parts

s the sign 1 bit
e the exponent 8 bits
m the mantissa 23 bits

Its value is defined as x = (-1)s × 2 e+127 × (1.m). A number is in normalized form, if its mantissa
satisfies 1.0 ≤ m < 2.0. It is assumed that numbers are always normalized, and therefore the
leading 1-bit is omitted. The exception is the singular value 0, which cannot be normalized. It must
therefore be treated as a special case.

It follows that integers and floating-point numbers are represented quite differently, and that
conversion operations are necessary to transfer a number from one format to the other. This is the
reason why the Oberon language keeps the two types INTEGER and REAL separate. Conversion
must be explicitly specified by using the two predefined functions

n := FLOOR(x) REAL→ INTEGER
x := FLT(n) INTEGER → REAL

Note: FLOOR(x) rounds toward -inf. For example FLOOR(1.5) = 1, FLOOR(-1.5) = -2.

The RISC processor does not feature specific instructions implementing these functions. Instead,
the compiler generates inline code using the FAD instruction with special options suppressing
normalization. This option is specified by the u and v modifier bits of the instruction.

The FLOOR function is realized by adding 0 with an exponent of 127 + 24 and suppressing the
insertion of a leading 1-bit (u = 1). This causes the mantissa of the argument to be shifted right
until its exponent is equal to 151. The RISC instructions are:

MOV' R1 R0 4B00H R1 := 4B000000H
FAD' R0 R0 R1

The FLT function is implemented also by adding 0 with an exponent of 151 and forced insertion of
a leading 1-bit (v = 1).

 82

MOV' R1 R0 4B00H
FAD" R0 R0 R1

There are two predefined procedures for packing and unpacking a floating-point number:

PACK(x, e) x := x × 2e (for x > 0)
UNPK(x, e) assign to x and e, such that x×2e = x0, where x0 is the original value of x,
 x becomes normalized, that is 1.0 ≤ x < 2.0

Assuming R0 = x and R1 = e, the instruction sequence for PACK(x, e) is
LSL R1 R1 23
ADD R0 R0 R1
STR R0 x

Again assuming x = R0, the instruction sequence for UNPK(x, e) is
ASR R1 R0 23
SUB R1 R1 127
STR R1 e
LSL R1 R1 23
SUB R0 R0 R1
STR R0 x

15.1.2. The square root function

We rely on the definition x = 2e×m Using the intrinsic UNPK procedure, the components m and e
are obtained from x. Then the square root is computed according to the formulas

sqrt(x) = 2(e DIV 2) × sqrt(m) if e is even,
sqrt(x) = 2(e DIV 2 - 1) × sqrt(2) × sqrt(m) if e is odd.

The advantage is that the argument of the square root now lies in the narrow interval [1.0, 2.0], and
therefore is easier and faster to approximate by a continued fraction.

PROCEDURE sqrt(x: REAL): REAL;
 CONST c1 = 0.70710680; (* 1/sqrt(2) *)
 c2 = 0.590162067;
 c3 = 1.4142135; (*sqrt(2)*)
 VAR s: REAL; e: INTEGER;
BEGIN ASSERT(x >= 0.0);
 IF x > 0.0 THEN
 UNPK(x, e);
 s := c2*(x+c1);
 s := s + (x/s);
 s := 0.25*s + x/s;
 s := 0.5 * (s + x/s);
 IF ODD(e) THEN s := c3*s END ;
 PACK(s, e DIV 2)
 ELSE s := 0.0
 END ;
 RETURN s
END sqrt;

15.1.3. The exponential function

Since our floating-point format is based on an exponent of 2, we first use the formula

exp(x) = ex = 2y with y = x × log2(e) = x / ln(2) log2(e) = 1.4426951

and first compute y. We decompose y into its integral part n = FLOOR(y) and its fractional part y0 =
y - n. Since 2n × 2y0 = 2n+y0, the result is the sum of the exponent n and the mantissa 2y0. Again, the
advantage of the decomposition is that the argument y0 of the polynomial approximation lies in the
narrow interval [1.0, 2.0].

 83

PROCEDURE exp(x: REAL): REAL;
 CONST c1 = 1.4426951; (*1/ln(2) *)
 p0 = 1.513864173E3;
 p1 = 2.020170000E1;
 p2 = 2.309432127E-2;
 q0 = 4.368088670E3;
 q1 = 2.331782320E2;
 VAR n: INTEGER; p, y, yy: REAL;
BEGIN y := c1*x; (*1/ln(2)*)
 n := FLOOR(y + 0.5); y := y - FLT(n);
 yy := y*y;
 p := ((p2*yy + p1)*yy + p0)*y;
 p := p/((yy + q1)*yy + q0 - p) + 0.5;
 PACK(p, n+1); RETURN p
END exp;

15.1.4. The logarithm

Again we take advantage of the presence of an exponent in the floating-point representation and
use the equations

ln (a×b) = ln a + ln b
ln (2e×m) = log2(2e×m) × ln(2) = e × ln(2) + ln m
PROCEDURE ln(x: REAL): REAL;
 CONST c1 = 0.70710680; (* 1/sqrt(2) *)
 c2 = 0.69314720; (* ln(2) *)
 p0 = -9.01746917E1;
 p1 = 9.34639006E1;
 p2 = -1.83278704E1;
 q0 = -4.50873458E1;
 q1 = 6.176106560E1;
 q2 = -2.07334879E1;
 VAR e: INTEGER; y: REAL;
BEGIN ASSERT(x > 0.0); UNPK(x, e);
 IF x < c1 THEN x := x*2.0; e := e-1 END ;
 x := (x - 1.0)/(x + 1.0);
 y := c2 * FLT(e) + x * ((p2*x + p1)*x + p0) / (((x + q2)*x + q1)*x + q0);
 RETURN y
END ln;

15.1.5. The sine function

Figure 15.1 Sine function y = sin(x)

First, the argument x is transposed into the interval [0, π/4] by computing

π 2π0

0 2 4

π/2

1 3

y

x 3π/2

2x/π

 84

n := FLOOR(y+0.5); y := (y - n)

and then distinguish between two approximating polynomials depending on whether x < π/4.
PROCEDURE sin(x: REAL): REAL;
 CONST c1 = 6.3661977E-1; (*2/pi*)
 p0 = 7.8539816E-1;
 p1 = -8.0745512E-2;
 p2 = 2.4903946E-3;
 p3 = -3.6576204E-5;
 p4 = 3.1336162E-7;
 p5 = -1.7571493E-9;
 p6 = 6.8771004E-12;
 q0 = 9.9999999E-1;
 q1 = -3.0842514E-1;
 q2 = 1.5854344E-2;
 q3 = -3.2599189E-4;
 q4 = 3.5908591E-6;
 q5 = -2.4609457E-8;
 q6 = 1.1363813E-10;
 VAR n: INTEGER; y, yy, f: REAL;
BEGIN y := c1*x;
 IF y >= 0.0 THEN n := FLOOR(y + 0.5) ELSE n := FLOOR(y - 0.5) END ;
 y := (y - FLT(n)) * 2.0; yy := y*y;
 IF ODD(n) THEN f := (((((q6*yy + q5)*yy + q4)*yy + q3)*yy + q2)*yy + q1)*yy + q0
 ELSE f := ((((((p6*yy + p5)*yy + p4)*yy + p3)*yy + p2)*yy + p1)*yy + p0)*y
 END ;
 IF ODD(n DIV 2) THEN f := -f END ;
 RETURN f
END sin;

15.2. A data link
Module PCLink serves to transfer data (files) to and from another system. Data are transmitted as
a sequence of blocks. Each block is a sequence of bytes. The number of data bytes lies between 0
and 255. They are preceded by a single byte indicating the length. Blocks are 255 bytes long,
except the last block, whose length is less than 255.

Here, the transmission channel is an RS-232 line. The interface consists of two registers, one for a
data byte (address = -56), and one for the status (address = -52). Bit 0 of this status register
indicates, whether a byte had been received. Bit 1 of the status register indicates, whether the byte
in the data register had been sent. (Note: the default transmission rate of the RISC is 9600 bit/s).

This module represents a server running as an Oberon task which must be activated by the
command Run. A server running on the partner system must be the master issuing requests. The
command sequence is a REC byte, a SND byte, or a REQ byte (for testing the connection). REC
and SND must be followed by a file name, and the sequence of blocks.

Every block is acknowledged by the receiver sending an ACK byte, for which the sender waits
before sending the next block. There is no synchronization within blocks. Because writing bytes
onto a file may involve operations of unpredictable duration, the received bytes are not written to
the file immediately. They are buffered and only output after the entire block had been received.

MODULE PCLink; (*NW 8.2.2013 for Oberon on RISC*)
 IMPORT SYSTEM, Files, Texts, Oberon;
 CONST data = -56; stat = -52;
 BlkLen = 255;
 REQ = 20H; REC = 21H; SND = 22H; ACK = 10H; NAK = 11H;

 VAR T: Oberon.Task; W: Texts.Writer;
 PROCEDURE Rec(VAR x: BYTE);
 BEGIN

 85

 REPEAT UNTIL SYSTEM.BIT(stat, 0);
 SYSTEM.GET(data, x)
 END Rec;

 PROCEDURE RecName(VAR s: ARRAY OF CHAR);
 VAR i: INTEGER; x: BYTE;
 BEGIN i := 0; Rec(x);
 WHILE x > 0 DO s[i] := CHR(x); INC(i); Rec(x) END ;
 s[i] := 0X
 END RecName;

 PROCEDURE Send(x: BYTE);
 BEGIN
 REPEAT UNTIL SYSTEM.BIT(stat, 1);
 SYSTEM.PUT(data, x)
 END Send;

 PROCEDURE Task;
 VAR len, n, i: INTEGER;
 x, ack, len1, code: BYTE;
 name: ARRAY 32 OF CHAR;
 F: Files.File; R: Files.Rider;
 buf: ARRAY 256 OF BYTE;
 BEGIN
 IF SYSTEM.BIT(stat, 0) THEN (*byte available*)
 Rec(code);
 IF code = SND THEN (*send file*)
 RecName(name); F := Files.Old(name);
 IF F # NIL THEN
 Send(ACK); len := Files.Length(F); Files.Set(R, F, 0);
 REPEAT
 IF len >= BlkLen THEN len1 := BlkLen ELSE len1 := len END ;
 Send(len1); n := len1; len := len - len1;
 WHILE n > 0 DO Files.ReadByte(R, x); Send(x); DEC(n) END ;
 IF ack # ACK THEN len := 0 END
 UNTIL len1 < BlkLen
 ELSE Send(11H)
 END
 ELSIF code = REC THEN (*receive file*)
 RecName(name); F := Files.New(name);
 IF F # NIL THEN
 Files.Set(R, F, 0); Send(ACK);
 REPEAT Rec(x); len := x; i := 0;
 WHILE i < len DO Rec(x); buf[i] := x; INC(i) END ;
 i := 0;
 WHILE i < len DO Files.WriteByte(R, buf[i]); INC(i) END ;
 Send(ACK)
 UNTIL len < 255;
 Files.Register(F); Send(ACK)
 ELSE Send(NAK)
 END
 ELSIF code = REQ THEN Send(ACK) (*for testing*)
 END
 END
 END Task;

 PROCEDURE Run*;
 BEGIN Oberon.Install(T); Texts.WriteString(W, "PCLink started");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Run;

 PROCEDURE Stop*;

 86

 BEGIN Oberon.Remove(T); Texts.WriteString(W, "PCLink stopped");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Stop;

BEGIN Texts.OpenWriter(W); T := Oberon.NewTask(Task, 0)
END PCLink.

15.3. A generator of graphic macros
The module MacroTool serves to create macros for the graphic system (Ch. 13). It provides the
commands OpenMacro, MakeMacro, LoadLibrary and StoreLibrary.

OpenMacro decomposes the selected macro into its elements and places them at the position of
the caret. This command is typically the first if an existing macro is to be modified.

MakeMacro L M collects all selected objects in the frame designated by the star pointer and unites
them into macro M. This macro is displayed at the caret position and inserted into library L. If no
such library exists, a new one is created.

LoadLibrary L loads the library L (under file name L.Lib). Note that a library must have been stored,
before it can be loaded.

StoreLibrary stores library L (with filename L.Lib).

The required modules are Texts, Oberon, Graphics, GraphicFrames.

